Maglev Technology

Fault Tolerance and Safety

based on a project by Azarin Jazayeri
Presentation Outline

- History and Recent Developments
- Technology Background
- Fault Tolerance and Safety
- Comparison with Other Systems
Early Developments

- In 1750 Mitchell noted: different magnetic fields attract each other and similar magnetic fields repel each other. This scientific principle is critical for the train to float.
- In 1904 Goddard described a rail system using an electromagnetic rail bed to levitate a train in a tube.
- The first ideas for a modern Maglev train were thought up in the early 1960's.
Projects Around The World

- **United States** - investigated Maglev technology but decided it was too expensive
 - Cost is $10 m to $30 m / mile to build Maglev train system in US

- **Japan** - planning on building a commercial train, test prototypes have been developed, extensive research into Maglev systems

- **Germany** - built Transrapid train, extensive research into Maglev systems
 - First commercial Transrapid line completed in China, in public use by end of 2003
Current Research & Developments

- Only Germany and Japan working intensively on further developing this technology.
- Researcher are currently working on making the technology safer, more efficient, and cheaper.
- Shanghai Maglev line is first commercial Maglev line in the world
- 8min from City Center to Airport, 45min by car
- Cost for project was $1.2 billion US
- Germany, China, Netherlands & US all considering additional Maglev lines
The Transrapid

- Maglev train designed in Germany
- First prototype developed in 1968, since then 8 different models have been built
- Most modern Transrapid has been tested over 60,000 miles
- Most tested Maglev system in the world.
- First Maglev system in commercial use
Vehicle Structure - Fault Tolerance

- Train is divided into separate sections
- Each section is placed on 4 bogies
- Bogies wrap around the track
- Each section has complete mechanical freedom
- Sections can respond individually to crosswind forces, radial forces and other forces
Propulsion System - Overview

- Like electric motor, except stator windings are underneath track.
- Generates a travelling magnetic field that pulls the support magnets and train along.
Propulsion System - Fault Tolerance

- Each section of the track is powered separately
- If power fails, train will be able to glide to next section where propulsion can resume
- Since track can only go one way at a time, collisions are near to impossible
Levitation System - Overview

- Support and Guidance magnets in a module
- When power turned on, train rises, when turned off, falls down.
- Power switched 100,000 times per second.
Levitation System - Fault Tolerance

- Magnets and electronics are called “magnetic wheels”
- 8 levitation wheels and 6-8 guidance wheels per bogey
- Wheels arranged in groups of 8
- 2 out of 8 wheels in every group can fail before entire system fails
- Failed levitation wheels are removed from system
Suspension System - Fault Tolerance

- Each bogey has its own vertical and horizontal suspension system
- Suspension is very soft
- If suspension on one bogey fails, other bogies still provide adequate suspension
- Horizontal suspension is reinforced with a hydraulic motor
1. Levitation Magnet
2. Guidance Magnet
3. Magnet Suspension
4. Skid Device
5. Bogey
6. Sec. Suspension z
7. Sec. Suspension y
Braking System - Fault Tolerance

- Triple redundancy
- Normal system uses magnets, emergency systems are mechanical
- Emergency systems act simultaneously if there is an emergency
- Each system controlled by separate component of on-board computer
- Emergency systems are independent on each bogy
Power System - Fault Tolerance

- Powered by four 440V batteries
- Each battery powers different set of magnetic wheels
- If one battery fails, controlled slowdown still possible
Control System - Fault Tolerance

- Train fully computer controlled
- Three components
- Each component checks the others
- Each component controls at least one of the braking systems
- Even if two components fail, third component can safely stop train
levitation and guidance system
Track Switches - Overview

- To change guideways, large switches are elastically bent and then secured.
- Can travel at full speed for unbent switches, and 100km/h for 78m bent switch, 200km/h for 148m bent switch.
Comparison - Other Train Systems

- Japanese Shinkansen (Bullet Train)
- French TGV
Japanese Shinkansen - Overview

- Built in 1964
- The world’s most advanced electrical and mechanical high speed train
- Speed = 300km/h, Passengers = 350,000/day & 130 million/year
- Automatic computer control for basic operation functions and human operator control for more complex functions
Japanese Shinkansen – Safety & Reliability

- No derailment or collision accidents
- No passenger or crew member fatalities
- Amazing Punctuality – average lateness per train in 1999 was 24 seconds
Japanese Shinkansen – Fault Tolerance

- **Scheduling and routing system**
 - displays the operation schedule on a single screen
 - allows the schedule to be revised by entering changes directly into the schedule diagram

- **Facility Monitoring System (FMS)**
 - when a failure occurs, the operator is alerted
 - monitors the "wind, snow, rain and rail temperature" environment data

- **Statistical Process Control & Proactive Failure Prevention**
 - meteorological & disaster information
 - appropriate speed limits and operating guidelines for safe train operation
French TGV – Overview

• Put into operation in 1981
• Combines high-speed performance with low environmental impact
• Speed record 370km/h in 1981 & 515km/h in 1990
• Operated in France, Belgium, Spain, Britain, Switzerland, Italy, and the Netherlands
French TGV – Fault Tolerance & Safety

- No passenger or crew member fatalities
- Constant monitoring system
 - integrity of all the elements of the bogies, suspension and braking system
- Special articulation
 - maximize the stability of the train set in a derailment and minimize the risk of jack-knifing
- Latest power systems & aerodynamic improvements
Benefits of Maglev

- High speed - 550km/h
- Very efficient - 30% less energy consumption than conventional trains
- Very comfortable
- No pollution, little impact on the environment
- Low maintenance, low operating costs
- Very safe and fault tolerant