

LAUNCHPOINT
TECHNOLOGIES

Low Cost, High Value Maglev

Jim Fiske
VP, Advanced Systems

5735B Hollister Ave., Goleta, CA 93117 jfiske@launchpnt.com -- (805) 683-9659 ext 239

LaunchPoint Technologies, Inc.

- **Maglev Heart Pumps**
1st Human Implants
1st Infant Pump
- **Maglev Energy Storage**
- **Maglev Space Launch**

Power Ring Electricity Storage

WorldHeart Rotary VAD

Pedia VAD

Launch Ring Space Launch

LAUNCHPOINT
TECHNOLOGIES

Rail Motor Railway Electrification

- Converts existing locomotives to electric operation in selected zones
- Eliminates all air pollution from trains in those zones
- Improves energy efficiency
- Improves system throughput
 - Higher speed on inclines
 - Replaces pusher locomotives
 - Regenerative braking on declines

What is the Best Investment for New Southland Transit Infrastructure?

- Population growth outpacing rest of State and US growth
- Passenger travel and freight already straining capacity, raising costs and hurting QOL
- Transit investment must maximize social benefits – increase ridership, reduce congestion, energy usage, pollution (diesel particulates)

Barriers to Improved Transit Service

- ▶ **High right-of-way, construction costs for new transit routes**
- ▶ **High operating, energy, environmental costs at current ridership levels**
- ▶ **Technology limits – fixed schedules, transfer delays, slow door-to-door travel time**

Why hasn't MAGLEV solved the problem?

- ▶ **Extensively researched for 30+ years**
- ▶ **Tremendous potential benefits**
 - several levitation and propulsion designs
- ▶ **BUT....operational limitations and high costs have prevented acceptance**

Limitations of Conventional Maglev

- ▶ Slow, expensive mechanical guideway switching
- ▶ In-line stations, no dynamic routing
- ▶ Long headways

Result: Competing Transit Modes

Conventional Maglev:

- ▶ Faster (slightly)
- ▶ Most energy-efficient
- ▶ Quiet at urban speeds
- ▶ Very high ROW costs
- ▶ Lack of flexibility limits urban usage
- ▶ Need to switch modes increases travel time

HSR:

- ▶ Fast (with costly ROW improvements)
- ▶ Only for long distances

Urban Rail:

- ▶ Limited capacity
- ▶ Fixed schedules
- ▶ Noisy
- ▶ High O&M costs

Solution: Maglev on Rail

- A New “Standard Gauge” for All Rail Transit
- Fully Inter-Operable: “Backwards Compatible”
- Subway Retrofit/New Intra-City Transport
- High-Speed Inter-City Transport
- Freight Transport — Trucks and Cars Possible

A Simpler, Better Maglev Design

SPM: Stabilized Permanent Magnet Suspension Using Opposed Halbach Arrays

- Permanent levitation
- Electronic stabilization
- Few mechanical parts
- Low drag at all speeds
- Low power
- Instant track switching

Incremental Upgrade

- **Inter-Operable**
 - Simultaneous rail/maglev operation possible
- **Builds on Existing Infrastructure**
 - Zero ROW costs for retrofit
 - Can use existing stations, etc.
- **Reduces Risk**
 - Incremental network upgrade
- **PLUS....all the advantages of maglev**

A Unique Set of Advantages

- **Flexible Infrastructure**
 - Mass Transit, Group Rapid Transit, Personal Rapid Transit
 - Combined Inter-City and Urban Transit
 - Installations on rail or roads (highway medians)
- **Dynamic Routing**
 - Optimize ridership, cut travel time, customize itineraries
- **High Performance**
 - Fast & Quiet with low energy usage
 - Maximizes value of transit-oriented development

Key Component Cost Comparison

Cost per mile of dual guideway, tracks,
motor and electrical:

Conventional Maglev	SPM Maglev Retrofit	New SPM Maglev
~\$45-60M	~\$20M	~\$25M

Value vs. Investment

- **Incremental HSR***
 - Upgrade existing railways (~90-150 mph)
 - Value/Initial Investment = 1
- **New HSR***
 - New alignments and track (175-200 mph)
 - Retain access to city centers
 - Value/Initial Investment = 0.3
- **Conventional Maglev***
 - Entirely new guideways (200+ mph)
 - 4-9x the cost of IHSR
 - Value/Initial Investment = 0.3
- **SPM Maglev**
 - Upgrade existing railways (200+ mph)
 - Value/Initial Investment >1

*Report to Congress: Costs and
Benefits of Magnetic Levitation
U. S. DOT, FRA, 11/2005

Design Also Supports Maglev PRT

LaunchPoint Prototype

Project Status

- ▶ Fastransit funding construction and test of demo system
- ▶ Recruiting development partners and hiring staff
- ▶ Beginning outreach to key customers and constituents

Seizing the Opportunity

- ▶ Build a Low Cost Demonstration System
 - Existing rail lines
 - Existing stations
 - Maglev Performance & Advantages
- ▶ Prove the Concept to Stakeholders
- ▶ Grow the System Incrementally
- ▶ Create a Revolutionary New Form of Transit that fully Utilizes Existing Infrastructure

Thank-you

Questions?

