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We present Part 3 results of a comprehensive theoretical study of an ‘electromaglev’
(‘active-maglev’) system, in which a high-temperature superconducting bulk YBCO
sample is levitated stably in a DC magnetic field generated by a magnet system. Field
solutions have been obtained numerically to compute levitation height and define
stability criteria for the superconducting disk sample. Our analysis assumes that the
disk, which otherwise obeys the Bean critical-state model, traps flux when cooled in
the presence of a field from the normal state to the superconducting state. Indeed it
is shown that the trapped flux makes subtle and crucial changes in field distribution
{and thus current density distribution) in the disk, which differ from those in a disk
strictly obeying the Bean model used in the zeroth-order theory. The analysis confirms
a key experimental finding that the trapped flux is another essential element for
determining levitation height and ensuring tilt-free stable levitation. For stability,
trapped flux is in addition to at least two degrees of freedom for spatial supercurrent
flow and the profile conditions imposed on the field generated by the magnet system.
Procedures to produce stable, tilt-free levitation are described. Agreement between
experiment and analysis on dependence of levitation height on magnet current is quite
good. The analysis also shows that to achieve stable levitation, a YBCO ring sample
requires a radial build that is sufficiently thick to permit the supercurrent to flow in
the radial direction. The minimum radial build required, AR,;., for a YBCO ring of
outside radius 12.5 mm operating at 77 K is typically ~ 50 um. An analytical expression
that gives approximate values of AR,,;, has also been derived; AR, depends inversely
on the square of the critical current density of the superconductor. © 1998 Elsevier
Science Ltd. All rights reserved

Keywords: F. magnetic levitation; active maglev; YBCO disk; magnetic field analysis;
Bean’s critical-state model

‘electromaglev’ (‘active-

outside coils); and steel plates. The entire components are

maglev’) system, in which a superconducting bulk sample
is levitated stably in a DC magnetic field'**. Figure |
shows a cross-sectional drawing of an active-maglev sys-
tem used to generate both experimental and analytical
results reported here. The system consists of: (1) YBCO
float (disk in this figure); (2) electromagnets (inside and
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operated immersed in a bath of liquid nitrogen. The focus
of the study has been on levitation stability, lift-to-weight
ratio, and lateral stiffness. Four YBCO bulk samples have
been studied: (1) disk; (2) annulus; (3) the same annulus
with a permanent magnet disk placed in the hole; and (4)
ring' ™%, the difference between annulus and ring is
explained later. The zeroth-order theory has been developed
to interpret the experimental results. Agreement between
experiment and theory (zeroth order) on lift-to-weight ratio
and lateral stiffness has been excellent, and it validates the
basic premise of the zeroth-order theory that lift is the Lor-
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Figure 1

Cross-sectional drawing of an active-maglev system used to generate both experimental and analytical results reported

here. The system consists of: (1) YBCO float (disk in this figure); {(2) electromagnets (inside and outside coils); and steel plates. The
entire components are operated immersed in a bath of liquid nitrogen

entz interaction force between the supercurrent circulating
in each YBCO float at the rim and the radial component
of the magnetic ficld generated by the magnet system.

This paper presents numerical analyses that lead to field
solutions for a YBCO disk exposed to a nonuniform field
generated by the magnet system. The field solutions are
used to compute levitation height, lift, and moment for the
disk. It also presents results of an analysis on two necessary
conditions required for a sample to achieve stable levi-
tation: (1) a sufficient level of trapped flux; and (2) at least
two degrees of freedom for spatial supercurrent flow.
Neither has been included in the zeroth-order theory used
in our previous analysis. Discussed in detail are field and
critical current density distributions of a disk sample with
trapped flux vis-a-vis the stability of the disk, both lateral
and pitch.

In the first papers on this work'?, we reported unstable
levitation observed in the experiment with a pancake coil
wound with silver-sheathed BSCCO-2223 tape, and attri-
buted the instability to an induced supercurrent that in the
pancake coil would be restricted to flow only in the azi-
muthal direction as the Amperian current flowing in a per-
manent magnet disk. An implication is that even a YBCO
ring would be unstable if its radial build is too thin; con-
versely if a silver-sheathed BSCCO-2223 tape has a super-
conducting layer that is sufficiently thick, a one-turn coil
wound with such a tape would be stable. As will be
presented here we have discovered that this two-dimen-
sionality of supercurrent distribution is a natural conse-
quence of the magnetic flux distribution within a disk or
ring that levitates stably. The analysis uses a disk as the
sample configuration; some of the results are then applied
to a ring.

Formulation
Equivalent current method

In the zeroth-order theory, the magnetic system consisting
of the electromagnets with the steel plates placed under-
neath is modelled as a steel-less system, in which the steel
plates are replaced with another set of electromagnets that
is identical to and placed coaxially at an appropriate dis-
tance below the original set. This model generates magnetic
field values that agree well in the axial component, B._, but
not so well in the radial component, B,. In this study we
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have relied on a numerical method, specifically an equival-
ent current method (ECM )% to generate accurate field
values for the magnetic system. ECM is simpler to execute
than more conventional methods such as the finite element
method (FEM) and boundary element method (BEM).
Appendix A discusses the ECM in more detail.

Bean’s critical-state model

The Bean critical-state model may be used to determine the
supercurrent distribution in a disk. In the zeroth-order
theory, the disk is modelled as a thin slice within a long
cylinder of the same radius. Accordingly, an external mag-
netic field, H_, directed parallel to the axis of the cylinder
penetrates into the disk from its rim, inducing a supercur-
rent within a thin layer called the penetration depth, which
in this model is given by H/J.. In reality, the field of the
magnet system is nonuniform and it induces supercurrents
at the three surfaces of the disk, top, bottom, and rim.
Because H, that parallels the top and bottom surfaces is
much smaller than f_ that parallels the rim, the penetration
depth of the supercurrent from the top or bottom surface is
much smaller than that from the rim. Among the supercur-
rents induced in the disk, that looping around the rim thus
contributes most to the lift. This conclusion agrees with
experimental results® that show virtually identical lift forces
for three circular samples—disk, annulus, and ring—of the
same outside diameters but with presumably different
supercurrents at the top and bottom surfaces.

Finite element method (FEM)

As qualitatively described above, field profiles both inside
and outside of a thin disk are quite different—particularly
the B, component—from those of a thin slice within a long
cylinder. The penetration depth of the disk, also an
important parameter for lift, is greater than that of the thin
slice. A two-dimensional finite element method (FEM)
based on the current vector potential (T) method’® was
performed to evaluate the supercurrents of the disk at three
surfaces. According to the experimental results that show
critical current density, J,, parallel to the a—b plane is ~ 3
times greater than that of the c¢-axis”, we may neglect the
current flow across the a—b planes and subdivide the disk
axially into several thin wafers.

The governing equation in two dimensions, with the
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assumption of zero current flow in the axial direction, is
given by:

" 1 - 871! 228 87‘11 /(l)
n-VxU\Vx(T,,n)+u(, E)t+4ﬂ-nf a,V\rdS (1)

5

where n is the directional vector normal to the surface; o,
is, as discussed below, an “appropriate’ conductivity of the
superconductor; T, is the current vector potential in the n-
direction; r is the distance between source and point of
computation; and B, is the ambient field generated by the
magnet system.

Equation (1), derived in Appendix B, is solved numeri-
cally with FEM using the Galerkin method. For applying
this conventional eddy current approach to shielding super-
current analysis, the following constituent equations are
used”;

I
J=0oE, mzlEi (E#0) (2)
oJ
5 =0E=0) 3)

The numerical scheme based on the Bean critical state
model follows an iterative process in which the conduc-
tivity of each element is adjusted to make the amplitude of
the current density in that element equal to J,.

In the numerical analysis, a disk, of radius R, = 12.5 mm
and thickness 8, = 5 mm, is divided axially into five thin
wafers, each 1 mm thick. Each wafer is further divided
radially into 49 rings and one disk at the center, each having
0.25 mm radial build. The external field used in the analysis
is nonuniform, as generated by the magnet system in the
experiment' . Figure 2 shows the current density distri-
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Figure 2 Current density distributions across the disk of radius
12.5 mm and thickness 5 mm as it rests on the the magnet sys-
tem at a magnet current of 20 A {(same amplitude but reverse
polarities through the outside and inside coils). The solid and
dashed traces correspond to those of the first (bottom)} and fifth
(top) wafers and the dotted trace corresponds to that of the
third {middle) wafer

butions across the disk resting atop the magnet system at
a current of 20 A (same amplitude but reverse polarities
through the outside and inside coils?). The solid and dashed
traces correspond, respectively, to those of the first
(bottom) and fifth (top) wafers and the dotted trace corre-
sponds to that of the third (middle) wafer. The induced
supercurrent in each wafer flows mainly at the rim and its
peak value is set at 10* A/m”. The radial penetration depths
of the top and bottom wafers are greater than that of the
center. This difference in penetration depth is due to the
supercurrent near each of the disk surfaces keeping the
inside field constant. Figure 2 also shows the presence of
a small amount of current in the region outside the pen-
etration depth. Magnetic flux densities within and in the
vicinity of the disk due to the magnet system (at 20 A) and
the supercurrent of the disk (within the penetration depth)
are calculated with another code based on the Biot-Savart
law'’. Figure 3 presents three graphs of magnetic vectors,
where in each graph the right-hand half of the disk is out-
lined as a rectangle (0 = r = 125 mmand 0 = 7 = 5
mm): in Figure 3(a) are the magnetic vectors due to the
magnet system alone; in Figure 3(b) are the magnetic vec-
tors of Figure 3(a) plus those due to the supercurrent within
the penetration depth; and in Figure 3(c) are the magnetic
vectors of Figure 3(b) plus those due to the supercurrents
within the penetration depths at both top and bottom sur-
faces. Also indicated in each graph is the dotted line tracing
the boundary of a long cylinder of radius R,,.

The magnetic vectors of Figure 3(c) appear to satisfy
the requirements of a superconducting disk; B, at the rim
of the disk, an important parameter for lift, is greater than
B, in Figure 3(a). Because B, due to the supercurrents in
the penetration depths of the top and bottom surfaces,
though nearly identical in magnitude, point in the opposite
directions, their net contribution to lift and pitch stability
is nearly zero. Neither do they have much effect, compared
with that flowing at the rim, on lateral stability. We may
thus proceed in the following analysis by neglecting the
supercurrents at the top and bottom surfaces.

Field-cool (FC) and zero-field-cool (ZFC)
processes

In the electromaglev experiment, a normal-state YBCO
sample may be cooled to the superconducting state by
either a field-cool (FC) or zero-field-cool (ZFC) process.

Field-cool (FC). The FC process follows the steps
described below?.

1. Start energizing the electromagnets, exposing a virgin
superconducting sample resting atop the magnet sys-
tem to an increasing magnetic field.

2. Hold the field at H,, when the virgin sample begins

levitating, tilted. H,, is the z-directed field by the mag-

net system at the rim of the sample.

Remove the sample from the magnet system and warm

it up to the normal state.

4. Place the sample back atop the magnet system and let
it become superconducting in the presence of H,.,, the
z-directed field by the magnet system at the rim. H,,
can be equal to, greater, or even slightly smaller than
H,.,. In our analysis of the disk, the z-axis induction at
the rim of the top wafer at H,, is designated B,

[F8]
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Figure 3 Three graphs of magnetic vectors, where in each
graph the right-hand half of the disk is outlined as a rectangle:
(a) magnetic vectors due to the magnet system alone; (b) mag-
netic vectors of (a) plus those due to the supercurrent flowing
in the penetration depth; and (c) magnetic vectors of {b) plus
those due to the supercurrents flowing in the penetration
depths at both top and bottom surfaces. Also indicated in each
graph is the dotted line corresponding to the boundary of a long
cylinder of radius R,

5. There are two options for the next step, steps 5(a),
5(b), and 6 or steps 5(c) and 6.
(a) Reduce the field from H, to zero. The trapped
flux of the disk is also denoted by B, The supercur-
rent generating this trapped flux in turn generates a
field whose z-axis induction at the rim of the top wafer
is denoted — B,,.
(b) Increase the field from zero. The nonvirgin sample
now floats stably, tilt-free, at field H,. > H ... Note that
H,, > H,, where H,, is the minimum z-axis field at
the rim of the sample required to ensure tilt-free stable
levitation in the FC process.
(c) Increase the field starting at H,,; the nonvirgin
sample levitates, tilt-free, at H,,.

6. At H,> H,, the sample levitates tilt-free at height 4 >

746 Cryogenics 1998 Volume 38, Number 7

0, where « is measured from the center of the coils to
the bottom surface of the sample. The z-axis induction
at the rim of each wafer at H,., at which the disk just
begins to levitate, is denoted B.,,.

Zero-field-cool (ZFC). In the ZFC process, the sample
is cooled from the normal state to the superconducting state
in zero field. No trapped flux is thus induced in the sample,
which remains virgin. Tilt-free stable levitation is not poss-
ible with the virgin sample. Note that the ZFC process is
a special case of the FC process in which H,» = 0.

Field and current density distributions. Figure 4
presents examples of field and supercurrent density distri-
butions within the disk along its x-axis ( ~ R, < x = + R,)
at y = 0 for the FC (Figure 4(a and b)) and ZFC (Figure
4(c)) processes. Both Figure 4(a and b) show field distri-
butions, B_(x) after step 5(a) (the light lines, from left to
right, connecting B,, B, and B,)) and step 5(b) or 5(c¢) (the
heavy lines, from B, at the left-hand side and B., at the
right-hand side), and corresponding supercurrent distri-
butions, J, derived from the B. distributions with J.
assumed field-independent. In Figure 4(a), B., is less than
2B, — B, (B, = 2B, — By), whereas in Figure 4(b), B.,
is greater than 28,, — B, (B., > 2B, — B,). The significance
of the difference between the two cases is evident from
both B. and J, distributions. When B, < 2B, — B, (Figure
4(a)), there is a thin annular region within the disk where
B_ dips below B,,. Within this annulus a supercurrent flows
in the direction opposite to that of the supercurrent flowing
at the rim; this current reversal has a great influence on
stability. When B, > 2B, — B, (Figure 4(b)), B. and J,
distributions are essentially identical to those of the ZFC
process (Figure 4(c)). It may also be noted that an asym-
metry in the J, distribution necessarily implies the presence
of J, so as to satisfy the conservation of net current.

In this paper, the field and supercurrent density distri-
butions within a sample are evaluated through the straight
application of a numerical analysis, results of which are
illustrated, for example, in Figure 4. For evaluation of a
system like the present one in which spatial changes in field
and supercurrent density distributions are small, FEM tech-
niques’® would use an enormous amount of computation
time and thus is, we believe, less suitable than the numeri-
cal analysis.

Levitation height

For a superconducting disk of radius R, and thickness &,
symmetric in the 6-direction with an r- and z-dependent
supercurrent density, J,(r,z), and exposed to an r- and z-
dependent magnetic induction, B.(r,z), lift, F_, at a levi-
tation height « is given by:

d+ 5(, I\”,
F.= J J27TJ,,(r,z)B,,( r.z)rdrdz 4)
d 4]

Equation (4) was solved with the disk first divided axi-
ally into five wafers, each 8/5 thick, and then with the
penetration region of the nth wafer (R,—~ 8, =r=R,)
divided radially into 15 rings, the mth ring having a radial
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Figure 4 Examples of field and supercurrent distributions within the disk along the x-axis ( — Ay =
B,; (c) ZFC process

in which B,, = 2B, — By; {(b) FC process in which B, > 2B, —

build of AA,,,,,,. Within each of the 75 rings, B, and J, are
assumed constant. Thus, Equation (4) becomes:

2, >
5 I Z E {A)\(m n)r(m v rI()[ r(lll /|)sM1 B [r(m njazu]}

m=1n=1

F.=

(5)

In Bean’s critical-state model, J, in the superconductor
can be 0, J, or — J., depending on the history of field
exposure, in this case, to H.. Thus, J, within each of the
subdivisions of the disk is: (1) — J,. for d H./dr > 0; (2) 0
for d Hidr = 0; or (3) + J_ for d H/dr < 0.

At a levitation height of 4, lift F. is balanced by the
weight of the disk M,g, where M,, is its mass, with a modi-
fication to include the buoyancy of the liquid since the disk
in this study series levitates immersed in liquid nitrogen.
At height, d, the disk is in equilibrium:

F.=(M,—- V,0,n2)8 (6)
where V,, is the volume of the disk and @, - is the density
of liquid nitrogen.

Lateral stability

Lateral stability is the ability of a levitated sample to return
to its original equilibrium position when displaced by a
small distance in the lateral direction. In our analytical
model of the disk under consideration, the disk, already
divided into 75 rings, is further dissected azimuthally into
12 equal sections, as shown in Figure 5(a). This is to take
into account the asymmetry of the magnetic field and cur-
rent distributions caused by a displacement of the disk by
Ax in the x-direction (Figure 5(b)). Then the total lateral
force F, is given by:

x =+ R,) at y=0. (a) FC process

(7)

m=1n=1p=1

{AA(m,n.pDr( niaLp )‘]6[ r(lll.ll.[))’le’B[)]B:[r( m,n,piﬂzn’ 0/)]COSB[)}

T 1
where 0, = 6 (p - 2), as indicated in Figure 5(a), is in the

x—y plane and measured from the + x-axis. For lateral stab-
ility, the following condition is required: oF /ox < 0.

Pitch stability

Pitch stability is the ability of a levitated sample to return
to its original tilt-free orientation when it is rotated by a

(c) Pitch stability

(a) Analytical model

Figure5 (a) Disk placed at the x-y-z coordinates and divided
into 12 equal sections in the azimuthal direction. (b) Disk pos-
ition for lateral stability analysis, showing a displacement of dx
in the + x direction. (c) Disk position for pitch stability analysis,
showing a rotation of 4, about the — y-axis

Cryogenics 1998 Volume 38, Number 7 747
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small angle about the y-axis—more generally about the r-
axis. When rotated by a small angle 6, about the y-axis,
the moment, M., is generated by both lift F. and lateral
force F, acting on the sample. For a small angle of rotation,
the moment by the lateral force is much less than that by
lift and it may be ignored. M, due to F. on the disk under
consideration rotated by 6, about the ~ y-axis (Figure 5(c))
is thus given by: V

81 5
EWI 2 2 E{AA(mnplr—mup} (8)

m=tu=1p=1

2
X JH[ r Ly e 6,,]3,.[ e m,n.p)’zn’ 0/,]COS BI,COS'Q‘-}

6
required condition is: 0M,/96, < 0.

where, again, 6, = 71.([)— %) For pitch stability, the

Results and discussion
Magnetic field

In the FC process, By, (trapped field, after step 4) as well
as By, (magnetic field at the rim with the external field zero,
after step 5(a)) are the key parameters required to deter-
mine the penetration depth. B, is estimated iteratively as
follows.

(a) Set B, zero initially: B, = 0.

{b) Determine a penetration depth with B, =0 and B,,.
(¢) Compute B, using the net supercurrent in the pen-
etration depth of step (b).

(d) Recompute the penetration depth with B, and B,
determined in step (c).

(e) Repeat steps (c¢) and (d) until B, converges.

The above sequence was used to determine B. in the
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Figure 6 Two sets of levitation height d vs. magnet current /
data, one for the disk and the other for the ring. Circles (disk)
and triangles (ring) are experimental® solid (disk) and dotted
lines (ring) are analytical; and dashed (disk} and double-dashed
(ring) lines are based on the zeroth-order theory'-3

748 Cryogenics 1998 Volume 38, Number 7

presence of an external field generated by the magnet sys-
tem. The trapped field B, is approximated to be the same
as the external induction of the magnet system at a field of
Hy in step 4 of the FC process.

Levitation height

Figure 6 presents two sets of levitation height d vs. [
(magnet current) data, one for the disk and the other for
the ring. Circles and triangles, respectively, for the disk and
ring are experimental; solid (disk) and dotted lines (ring)
are analytical. (Results based on the zeroth-order theory are
given by the dashed and double-dashed lines, respectively,
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L
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Figure 7 d vs. | diagrams indicating stable regions for three
combinations of /, (outside coil current) and /, {inside coil
current): (a) disk; and (b) ring. In each diagram the stable region
has three outer boundaries—the solid (,, = - /,, used in the
experiment)?, dashed (/, = - 0.5/,), and double-dashed (/, = 0).
Also shown are d vs. ! plots, experiment (circles for the disk
and squares for the ring)? and present analysis {dotted lines for
both disk and ring)
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Figure8 Three sets of schematic drawings for B,(x), J,(x), and f.(x) {force density in the x-direction) distributions across the disk
at y = 0 in equilibrium: (a) FC process in which B,, = 28, — B,; (b) FC process in which B, > 28B4 - By, (¢) ZFC process

for the disk and ring.) The computed lines—this analysis
and zeroth-order theory—include the buoyancy effect of
liquid nitrogen. Agreement between experiment and theory
(this analysis) is reasonable. Note that both experimental
and analytical curves show a clear-cut transition. The dis-
crepancy is due chiefly to an overestimation in the analysis
of the trapped flux, B;,; agreement should be improved with
a trapped flux smaller than B,,.

Agreement between theory and experiment in Figure 6
is better with the zeroth-order theory than with the present
analysis. This should not lead to the conclusion that the
zeroth-order theory is as good as or even better than the
present analysis. As pointed out earlier, the zeroth-order
theory does not take into account the presence of trapped
flux in a sample nor the irreversibility of supercurrent distri-
bution. Thus, the theory can predict quite accurately the
dependence of levitation height with respect to magnet cur-
rent, provided it is adjusted to a particular data point, as
illustrated in Figure 6; it is unable to predict correct levi-
tation height for a sample with an arbitrary value of trapped
flux. Lack of trapped flux in the theory also makes it unsuit-
able to deal with lateral and pitch stabilities in a more gen-
eral way.

The present analysis has also been applied to determine
the magnet current corresponding to Hy, for each sample.
As described earlier in connection with the field-cool (FC)

process, H,, is the minimum z-axis field at the rim of the
sample required to ensure tilt-free stable levitation (step
5(b)). According to this analysis, currents to generate Ho
are 8.1 A and 5.7 A, respectively, for the disk and ring;
respective currents determined in the experiment are 8 A
and 6 A. Agreement between theory and experiment is
quite good.

Lateral and pitch stability

Figure 7 shows d vs. I graphs of stable regions for the disk
(Figure 7(a)) and ring (Figure 7(b)) samples, for three sets
of /, and I, currents, respectively, for outside and inside
coils. In each graph, the stable region is bounded by the
solid, dashed, and double-dashed lines, respectively, for
sets of [, = — [, (experiment), I, = - 0.5/, and I, = 0. In
addition, each graph also includes d vs. I plots, experiment
(circles or squares) and this analysis (dotted lines), for both
samples. Agreement between experiment and analysis is
fair. Results of Figure 7 imply that stable levitation is achi-
evable without inside coil, which is energized to generate
a magnetic field directed opposite from that of outside coil
and extend the ‘magnetic well” (dB./or > Q) profile over a
larger axial span than otherwise possible with outside
coil alone.

Figure 8 shows three sets of schematic drawings for
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B(x), Jy(x), and f.(x) distributions across the disk at v = 0
with the disk at the center. f,(x) represents force density
in the x-direction; here only its polarity, not amplitude, is
significant. The distributions are for FC processes ( Figure
8(a and b)) and the ZFC process (Figure 8(c)). In each
set, the penetration region of the disk is divided into annular
zones, in Figure 8(a), for example, into six zones, labelled
| to 6. Because the external field is symmetric about the
z-axis, so are the B.(x), J4(x), and f,(x) distributions in each
set. However, depending on the size of B, relative to 2B,,
— By, i.e., By = 2B, — B, (as in Figure 8(a)) or B, > 28,,
— By (as in Figure 8(b)), there are subtle differences in
these distributions between the two FC processes, as dis-
cussed earlier in connection with Figure 4.

Figure 9 shows similar sets of drawings for the disk dis-
placed by dx in the x-direction: Figure 9(a) for B, =< 2B,
-~ B, (FCI1 process) and Figure 9(b) for B, > 2B,, — B,
(FC2 process); and Figure 9(c) for the ZFC process. B.,
is the flux at the rim of the disk upon displacement. (B.,
in Figure & is the flux at the rim of the disk in equilibrium.)
Because B.(x) is now asymmetric, so are J4(x) and f.(x).
Note that in each set the displacement: (1) creates a new
annular zone (labelled 0) in the right-hand side; (2)
decreases zones | and 5; and (3) increases zone 6. (For the
sake of brevity, henceforth a ‘zone’ refers to the size of a

zone; also FC and ZFC refer, respectively, to the FC and
ZFC processes.) These changes all contribute to enhance
the net lateral restoring force, implying that the condition
of dB./0r > 0 that causes these changes ensures lateral stab-
ility. Note that the ratio of zone 2 to zone | in J, distri-
bution, because zone 2 current generates a restoring force
and zone | current an unstabilizing force, is important for
lateral stability. Because zone 2 of FC1 is much smaller
than that of ZFC, the ratio of zone 2 to zone | is much
smaller for FC1 than that for ZFC: for lateral stability ZFC
thus provides a condition more favorable than FCl. As
noted earlier that an asymmetry in the J, distribution neces-
sarily implies the presence of J,; J,, however, has no direct
impact on stability.

Figure 10 shows three sets of schematic drawings for
distributions across the disk at y = 0 of B.(x), J4(x), and
m(x) (moment density about the y-axis) with the disk in
equilibrium: Figure 10(a) for B, < 2B;, — B, and Figure
10(b) for B, > 2B,y — B,, both FC; and Figure 10(c) for
ZFC. Note that the m, distribution indicates only polarities
(the + sign for moment density in the + y-direction and the
— sign for moment in the — y direction). As before, the
penetration region of the disk for each FC is divided into
six annular zones, | to 6. As in Figure 8 the sets have
symmetrical distributions along the x-axis. Also as in Fig-

AB:

AJo

-Jc L] 1] 1 1] nan -Jc
\Fo G Ea Do, iR ARG
0 0 : o ot o
5 P otex 4 fex | Fx
-Ra+dx 0 Ra+dx -Rd+dx Ra+dx -Rd+dx 0 Ra+dx
(a) FC (Bzo<2Bio-Bo) (b) FC (Bzo>2Bio-Bo) (c) ZFC

Figure 9 Three sets of drawings for B,(x), J,(x), and f(x) (force density in the x-direction) distributions across the disk at y = 0 with
the disk displaced by dx in the x-direction: (a) FC process in which B, = 2B, — B,; (b) FC process in which B, > 2B, — By; (c)

ZFC process
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Figure 10 Three sets of schematic drawings for B,(x), J,{x), and m,(x} {moment density about the y-axis) distributions across the
disk at y = 0 in equilibrium: (a) FC process in which B, = 2B, - B,; (b) FC process in which B, > 2B, ~ B,; (c) ZFC process

ure 8, there are subtle differences in distributions between
those in Figure 10(a) and those in Figure 10(b).

Figure 11 shows similar sets of drawings with the disk
rotated by angle 6, about the — y-axis: Figure 11(a) for B,
= 2B,, — B, and Figure 11(b) for B, > 2B,, — B,, both FC
processes; and Figure [1(c) for the ZFC process. As in
Figure 9, because B.(x) is asymmetric, so are Jy(x) and
m,(x). Note that in each distribution the displacement: (1)
creates a new annular zone (labelled 7); (2) decreases
zones 2 and 6; and (3) increases zone 1. These changes,
together with an increase of B, in zone 1 and decreases of
B, in zones 4 and 6 (Figure 11(a)) and in zone 6 (Figure
11(b)), all contribute to make the disk pitch-stable. On the
other hand, a combination of an increase of B, in zone 2
and decreases of B, in zones 5 and 7 makes the disk pitch-
unstable. Trapped flux is a decisive factor in making each
of these rotation-induced changes, B, and zone size, either
stabilizing or unstabilizing. Thus, when trapped flux is
small, which applies also to ZFC, zone 2 becomes generally
much larger than zone 1, and zone 5 is much larger than
zones 6 and 7, making B, effects dominate zone effects
and hence makes the disk pitch unstable. (Note that the
distributions shown in Figures 4, 8—11 are all schematic
and do not present relative sizes accurately; some are drawn
much larger than the actual sizes for the sake of clarity.)
Conversely, the greater the trapped flux, the greater the

zone effects, making the disk pitch stable, provided that the
trapped flux is sufficiently great. As stated earlier, a key
parameter is H,,, which is the trap-flux-inducing field in
step 4 of the FC process. Note that H,., must be at least Ho.

Minimum radial build

Among the four samples examined, the ring has been
judged best based on the lift-to-weight criterion®. Here we
may distinguish a ring from an annulus in terms of its radial
build, AR( = R, — R;,), where R,, is the inside radius of
the ring: we may call an annulus a ring if AR < R/2 and
an annulus an annulus if AR > R/2. If a ring is the best,
the next obvious question is ‘how small can its radial build
be?” As demonstrated in the experiment'?, a BSCCO-2223
tape solenoid is unstable, perhaps in part because, unlike
the YBCO annulus and ring, it is multi-turned and most
likely because the effective thickness of the supercon-
ducting layer of the tape is too thin to satisfy another
requirement for stable levitation: at least two degrees of
freedom for spatial supercurrent flow'2. We shall thus now
examine the radial build of the ring, specifically its mini-
mum thickness to satisfy this spatial flow requirement.
Figure 12 illustrates two sets of B.(x) and J,(x) distri-
butions for ring 1 (Figure 12(a)) and ring 2 (Figure 12(b))
having the same outer radius (R,), thickness (8,), and the
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Figure 11 Three sets of schematic drawings for B,{x), J,(x), and m {x) (moment density about the y-axis) distributions across the
disk at y = 0 with the disk rotated by angle 6, about the - y-axis; {a) FC process in which B, = 2B, — B,; (b} FC process in which
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same level of trapped flux but with different radial thick-
nesses, ring | being thicker (and thus heavier) than ring 2.
To achieve a given levitation height, ring 1 thus requires
an external field greater than does ring 2, making, as seen
in Figure 12(a and b), B., for ring | greater than that for
ring 2. This in turn results in the J, zone of ring | being
greater than that of ring 2, making ring | pitch-unstable
and ring 2 pitch-stable. The condition that determines pitch-
stability (or instability) is the relative magnitude of B, in
comparison with that of B_y;,, which is defined in the fig-
ure. Thus, stability is ensured if B., << B_y;,, and vice versa.
This condition has an important implication: a ring, because
it is lighter, is generally more pitch-stable than a disk of
the same outer radius and thickness. Because the ratio of
B_o/B_yim depends not only on trapped field but also on the
weight of the ring, the required minimum thickness for rad-
ial build to ensure pitch stability, AR, ;,, may be estimated
from lift, F., and the weight of the ring, M, g, where M, is
the mass of the ring.

As an illustration, Figure 13 shows B.(x) distributions
for three rings, ring | (Figure 13(a)), ring 2 (Figure
[3(b)), and ring 3 (Figure 13(c)), all having the same
thickness but different AR. Here, it is assumed that each
ring has just the right amount of trapped flux to satisfy the
condition F. = M, g and thus is levitated stably at a given
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height. Ring I, having the largest AR among the three, is
thus the heaviest, and models the ring used in our experi-
ment. It requires a large B, to begin levitation. Ring 2,
having a smaller AR than ring 1, models a lighter ring. Ring
2 has the same amount of trapped field (B,,) as ring 1, thus
requiring a smaller B, than ring 1, which, in turn, gives
rise to, as evident from Figure 13(a and b), a B.(x) distri-
bution that is subtly different from that of ring 1. The inside
wall area of ring 2 now carries a supercurrent that flows in
the direction opposite to the main supercurrent, resulting
in a net reduction in lift. We may eliminate this negative
supercurrent by reducing the trapped flux. Ring 3 models
such a ring: its radial build is equal to a minimum level
required for stable levitation, AR,,,. For ring 3 with an
outer diameter of 25 mm and thickness of 5 mm, AR,
becomes ~ 50 wm, comparable with the thickness of
BSCCO-2223 layers in mono-tape silver-sheathed tapes.
The BSCCO-2223 solenoid that proved unstable in our
study was wound with multi-tape BSCCO-2223 tape having
the BSCCO-2223 layers each estimated to be one order of
maghnitude smaller than 50 wm. To achieve stable levitation
with a one-turn ring wound of such a tape, the superconduc-
tor layer of the tape must be ~ 100 um and thicker.
Bean’s critical-state model may also be used to estimate
AR,.... Here, we may assume both a supercurrent density
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Figure 12 Two sets of B,(x) and J,(x) distributions for two rings of the same outer diameter but with different radial thicknesses.
(a) Ring 1; (b} ring 2. Ring 1 is thicker (and thus heavier) than ring 2

of J. and the radial component of initial magnetic flux den-
sity within the superconductor, B, to be constant. An
expression for lift, ., for a ring with outside radius of R,
and inside radius of R;, may be given by:

F.=m(R} — R.)8.Bol. (9)

Because our levitation experiments' * have all been per-
formed with each YBCO sample immersed fully in a bath
of liquid nitrogen boiling at 77 K, the buoyancy effect of
the liquid nitrogen must be included. The effective weight
of the ring, [M, gl.. is thus given by:
(Mgl = m(RG ~ R7,)8A04 — O1n2)8 (10)
where @, and Q .- are densities, respectively, of the
material of the ring (6400 kg/m® for YBCO) and liquid
nitrogen (807 kg/m*). From the equilibrium condition, F.
= [M, gl.r. we obtain an expression for B,

(Qu — Qun2)
B, = ; Oun2)8

¢

(1

Both magnetic flux densities, B, and B, are pro-
portional to the magnet current. Therefore we may express
B, in terms of B._y:
B,,=CB, (12)
where C is a proportionality constant. From the B.(x) dia-
gram of ring 3, shown in Figure 13(c), trapped field By, is
clearly one half of B, i.e., By, = B./2. The penetration
depth of the supercurrent for this ring (Figure 13(c)), Ag,
is equal to R, — R, which is, by definition, equal to
AR,... here.

)\R = R:I - Rlnin = ARmin ( 13)

Using Bean’s critical-state model, we have:

VB/‘Q

AR in =
e ,“Lo‘]('

(14)

Combining Equations (11)—(14), we have an expression
for AR, n:

(@4 — Q)8
ARmm - 2C,LL0J? ( 15)

In our system, C is 0.099 and inserting appropriate values
for parameters of Equation (15), e.g.. J. = 10° A/m?, we
obtain: AR,,, = 20 wum, which is of the same order as ~
50 um computed in the numerical analysis. This discrep-
ancy of ~ 30 pum comes about because here AR, is
derived without meeting the condition that trapped flux
must be of a sufficient level for pitch stability. Note that
AR, depends inversely on J2.

Conclusions

Field solutions have been obtained numerically to compute
levitation height and define stability criteria for a supercon-
ducting disk sample in an ‘electromaglev’ (‘active-
maglev’) system. Our analysis assumes that the disk, which
otherwise obeys the Bean critical-state model, traps flux
when cooled in the presence of a field from the normal
state to the superconducting state. The analysis confirms a
key experimental finding that the trapped flux is another
essential element for determining levitation height and
ensuring tilt-free stable levitation. For stability, trapped flux
is in addition to at least two degrees of freedom for spatial
supercurrent flow and the profile conditions imposed on the
field generated by the magnet system. Agreement between
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Figure 13 B,(x) distributions for three rings having the same
thickness but different values of AR: (a) ring 1; (b) ring 2; and
(c) ring 3

experiment and analysis on the dependence of levitation
height on magnet current is quite good. The analysis also
shows that to achieve stable levitation, a YBCO ring sam-
ple requires a radial build that is sufficiently thick to permit
the supercurrent to flow in the radial direction. The mini-
mum radial build required, AR,,;,, for a YBCO ring of out-
side radius 12.5 mm operating at 77 K is typically ~ 50
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mum. An analytical expression that gives approximate values
of AR, has also been derived; AR,,, depends inversely
on the square of the critical current density of the supercon-
ductor.
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Appendix A
Equivalent current method
The magnetization vector M is derived as follows.
To obtain a formula for the magnetic flux density in the
presence of steel plates, we let m, be the magnetic dipole

moment of an atom. If there are n atoms per unit volume,
we define a magnetization vector, M [A/m], as:

naAv

> m

= lim = - Al
M= 0m v (Al
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which is the volume density of magnetic dipole moment.
The magnetic dipole moment ¢dm of an elemental volume
dV is dm = MdV that produces a vector magnetic potential:

M
dA =P T gy (A2)
4qrr
Thus:
o 1
A= |dA="°MxV| |av (A3)
4 r
Vv Vv

where V is the volume of the magnetized steel plates. We
now use the vector identity to write:

i | M
MxV(): VxM—Vx() (A4)
r r r
and expand the right-hand side of Equation A(3) into
two terms:

VxM
A=t f VXM gy e JV X <1\r4)dv (A5)

47 r %
v v

Using a vector identity, we can change the volume inte-
gral of the curl of a vector into a surface integral. We thus
have, from Equation A(S5):

VxM . | Mxa,
A=“"f X ava “f =% s (A6)
47 r
1% 8

where a,, is the unit outward normal vector from dS and S
is the surface enclosing the volume V. The vector magnetic
potential is also expressed in terms of current density J:

dqr | r
v

A ““j"dv (A7)

A comparison of the expressions on the right-hand side
of Equation A(6) with the forms of A in Equation A(7)
suggests that the effect of the magnetization vector is equiv-
alent to both current density J and surface current den-
sity K:

J=VxM (A8)
K=Mxa, (A9)

Using the magnetic flux density B and the magnetization
vector M, we obtain:

I 1
m=(L- s

Ho M
where p is the absolute permeability. The vector magnetic

potential given by the magnetization vector can be writ-
ten as:

(A10)

, | M x
A:“‘j “Tav

4 r
v

(All)

After substituting Equation A(I1) into B =V x A, we
obtain an expression for B:

B=B +“"ij(Mxr)dv (A12)

C 4qr r
v

where B, is the magnetic flux density generated by the elec-
tromagnets placed underneath the sample. Combining Equ-
ation A(10) and Equation A(12), we have a final govern-
ing equation:

[ AT M
M - ( —- ) Ho 1y x ( fr)dv= L B,
Mo p) A r B M

v

(A13)

The following approximations were used in solving Equ-
ation A(13): (1) the steel plates are divided into infinitesi-
mal annular ring elements; and (2) the magnetization vector
M is constant within each element. The approximations
make the term that includes the magnetization volume cur-
rent density zero. These approximations introduce little
error to Equation A(13). The magnetic flux density B, is
calculated numerically by using Biot—Savart’s law over the
volume of conductor in the electromagnets.

Appendix B
Current vector potential method (FEM)

The governing equation in two dimensions assumes the cur-
rent distribution in the axial direction to be zero and is
derived as follows.

The current vector potential T is defined by:

VxT=J (B1)
V-T = 0(Coulomb gage) (B2)
n X T = 0 (on the surface) (B3)

where n is the unit vector on the surface. Using
Helmbholtz’s formula, the governing equation is derived
as follows:

T T, _(1 B
VX;)_IWVXT+M08 +“"f ”V(-—)dS= =

A 4m) o \r T oo

N

(B4)

where T, r, and B, are the normal component of T, the
distance between surface and field point, and the applied
flux density by the magnet system, respectively. The gov-
erning equation in two dimensions, with an assumption that
the current distribution in the axial direction is zero, may
be rewritten from Equation B(4) as:

1
nVx—
0.\

Vx(T,m) + %T; (B5)
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Note that Equation B(5) is identical to Equation (1) in

Mo a7, (1 _ dB, the main text.
+47rnj ot V(r>dS— " u

R
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