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ABSTRACT:  The aim of the present analysis is to compare electro-dynamic (EDS) and electromagnetic 
(EMS) sustentation systems. For the electro-dynamic solution, the simplified model will be a sine wave MMF 
generated by a DC conducting layer in front of a semi-infinite conducting space. For the electro-magnetic 
solution, an electromagnet in front of iron will be considered. In a second step a more precise model is 
presented, allowing a sensitivity analysis of the main design parameters: speed, air gap, conducting layer 
thickness, pole pitch, etc  

1 SIMPLIFIED METHODOLOGY 

1.1 Electro-dynamic sustentation 
The system is defined as two semi-infinite spaces air 
and conducting material with a sine tangential 
magnetic field moving at the surface (Fig 1). The 
main variables are:  
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Such as for the magnetic flux density B: 
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Figure 1. EDS semi-infinite spaces. 

 
 
Two half-spaces, air and conducting material, are 
separated by a plane. 
On the surface, on the air side, an ideal conducting 
layer creates an alternating magnetic field in the y 
direction at the level z = 0: 
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If the excitation layer moves at the speed v in the y’ 
direction, it comes: 
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It is possible to associate complex numbers to sine 
expressions: Air 
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The vector potential is co-linear with the electric field 
E, in the x direction. By analogy, the vector potential 
can be written as: 
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Equation [3] becomes: 
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In a complex form : 
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Defining: 
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  the solution is: 
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The vector potential cannot be infinite for z = ∞, 
thus: 
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From [1]: 
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At the limit (z = 0), according to [3],  Ω= 0ĤH y , 
so: 
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The force perpendicular to the separation surface is, 
according to Maxwell’s stress tensor: 
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The average specific force (pressure) is : 
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 [5] 
The expression in [5] is always negative, which 
means a repulsion force. 
If τ = 0.5 m  ;   ρ = 32 nΩm (Al) we have the 
following values: 

- already for a speed of 0.15 m/s the expression 
in [] = -0.5 

- for a speed of 15 m/s  [] =-0.99 
- for a speed of 150 m/s [] = -0.999 

 
Figure 2 EDS structure and excitation 

MMF 
δ

H Al

 
The repulsion force is proportional to the magnetic 
field square. If the distance d increases, the tangential 
magnetic field decreases. So for a given mass, it 
appears an equilibrium position corresponding to 
both repulsion and gravitation forces equilibrium. 
 
 F  
 
 
 repulsion force  
 

gravitation force  
 
 

δ 
 δ

 
Figure 3. EDS force equilibrium. 
 
This force has a maximum value of  
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The tangential field at the excitation layer level is 
given by: 

Θ−= dagrH rr
   with Θ = MMF : 
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This force corresponds to a maximum with a distance 
δ = 0.  
 
A more complete model is described in Section 3. 
Other solutions based on coils instead of conducting 
layer are possible, as an example such as used for the 
Japanese MLX. 
 

1.2 Electromagnetic sustentation EMS 
The EMS solution is based on an electromagnet (Fig 
3) interacting with an iron surface and controlled in 
position, imposing a constant air gap δ. 

 
 
Figure 4. Electomagnetic system 
 
The force per surface unit (pressure) is : 
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By Ampere’s law: 
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With  Θ = Coil MMF 
          Ksat = saturation coefficient (1.05÷1.5) 
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1.3 Comparison 
 
It is possible to compare the respective performances 
of EMS and EDS systems. In this aim, the same 

l be supposed in both cases. MMF wil
So, using expressions [6] and [7]: 
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Example: 
ksat = 1.2    ,     δ=0.02 m 
τ = 0.5 m 
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With the same MMF, the EDS force per surface unit 
is about 1% of the EMS one. In other words, the 
necessary MMF for EDS is about 10 times higher 
than the one for EMS. 
That is the reason for a superconducting coil for the 
EDS excitation. 

2 2D EDS MODEL 

2.1 Structure 
The inductor defined in Figure 5 generates a 
magnetic field with a tangential component such as: 

)sin(ˆ
0 τ

π
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According to the necessity to proceed to first and 
second order derivatives, it is more efficient to 
associate the complex calculus: 
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Figure 5. EDS 2D structure 
 
Three domains are defined : 

• I - The air gap domain 
• II - The aluminium domain  
• III - The air opposite to the air gap 

2.2 Resolution 
Domain I: 
Laplace’s law [1] can be applied. The corresponding 
solution is: 
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Domain II: 
Poisson’s law [2] can be applied. The corresponding 
solution is: 
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Domain III: 
Laplace’s law [1] can also be applied. The 
corresponding solution has the same form: 
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Between these different domains, the different 
following continuity relations can be applied: 

• For z = 0: 
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• For z = δ: 
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• For z = δ + ε: 
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• For z = ∞: 
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Out of these relations, it is possible to determine the 
integration constants: D1, D2, R1, R2, D3, D4 . 
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The different pressures interacting on the aluminium 
plate can be determined from Lapalce’s tensor: 
For the normal pressure pn: 
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1
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For the tangential pressure pt: 
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00 tntnt HHHHp ℜ== μμ  [17] 

2.3 Results 
Relations [16] and [17] have been applied to an EDS 
system with the following data: 
Pole pitch τ = 0.5 m, 2 poles 
Inductor and plate width 1 m 
Aluminum plate of 10 mm  
MMF = 20’000 A 
In Figure 6, the normal and tangential pressures are 
represented as a function of speed between 0.5 and 5 
m/s.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6. EDS 2D structure – Pressures as a function of speed 
(low speed) 
 
 
In Figure 7, the same normal and tangential pressures 
are represented as a function of speed between 5 and 
55 m/s.  
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Figure 7. EDS 2D structure – Pressures as a function of speed 
(high speed) 
 
On Figure 8, the normal and tangential pressures at a 
speed of 50 m/s are represented as a function of the 
gap δ, from 0 to 100 mm. Logically, both pressures 
are decreasing with the air gap. For a zero air gap, the  
value for the normal pressure is 4960 N/m2, which is 
the same as given by relation [8].   
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Figure 8. EDS 2D structure – Pressures as a function of air gap 
at 50 m/s  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. EDS 2D structure – Pressures as a function of pole 
pair number at 50 m/s and a gap of 50 mm. 
 
On Figure 9, the pressures are represented at a speed 
of 50 m/s for an axial length of 1 m and different pole 
pair number with the relation: 
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The force decreases with the pole pair number or 
with the pole pitch decreasing.  
 
On Figure 10, the normal and tangential pressures at 
a speed of 50 m/s are represented as a function of the 
aluminum plate thickness ε. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. EDS 2D structure – Pressures as a function of 
aluminum plate thickness ε at 50 m/s 
 
The plate thickness has a very low influence on the normal 
pressure or levitation force above 1 mm. On the contrary, 
the influence is important on the tangential pressure or on 
the drag force. A thickness of 8 mm or above is necessary 
to limit this effect. 

3  CONCLUSION 

The presented methodology to analyze the EDS system 
and to compare it to the EMS system is a simple but 
efficient way to proceed with an aluminum plate fixed to 
the track structure. It allows a direct parametric analysis. 
The same procedure can also be applied to coils fixed on 
the track. 

4 SYMBOLS 

All symbols in MKSA unit system 
 
B Flux density 
D1,2,3,4 Integration constants 
E Electric field 
F  Force 
F’ Force per surface unit 
H Magnetic field 
j Complex unit number 
K1,2 Integration constants 
L Length 
p Pressure 
R1,2 Integration constants 
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S  Surface 
t Time 
v Speed 
x,y,z Coordinates 
δ Air gap 
ε Aluminum plate thickness 
λ π/τ 
ξ [13] 
τ pole pitch 
µ permeability 
µ0 vacuum permeability 
Θ MMF 
Ω [4] 
 
Indexes 
 
n normal 
sat saturated 
t tangential 
x,y,z in the direction x,y,z 
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