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ABSTRACT: In this paper, Dynamic modeling, Numerical simulation and Experimental validation of an EMS 
demonstration vehicle is presented. The dynamic model incorporates rigid body modes as well as a finite 
number of flexible modes of vibration. Decentralized PD controllers are designed individually for each of the 
six electromagnets. These controllers are used in numerical simulation as well as in real time levitation of the 
vehicle. Comparison of levitation results between numerical simulation and real time data validated the 
dynamic model thus developed. 

1 INTRODUCTION 

A 5000 pound, EMS maglev demonstration system is 
currently being developed at Old Dominion 
University (ODU), Figure 1. As part of this on-going 
research, a linear structural model of the vehicle, 
along with the electrodynamics of the magnets was 
developed. Decentralized PD controllers for 
levitation control were designed based on the linear 
model. These controllers were used in real time 
levitation of the vehicle, and also in numerical 
simulation of the levitation using Matlab Simulink 
software. In this paper, development of the dynamic 
model, along with controller design is briefly 
discussed. Comparison between real time levitation 
data and numerical simulation data is presented. This 
comparison indicates the accuracy of the developed 
model and the effectiveness of the controllers in 
stabilizing the levitation. 
 
2 EXPERIMENTAL SET-UP 
 
The ODU Test Vehicle, shown in Figure 1, is a 
welded aluminum structure equipped with six 
Electromagnets, six Pulse Width Modulated (PWM) 
Power amplifiers, two linear induction motors 
(LIMs), along with position and acceleration sensors, 
data acquisition and control equipment. This structure 
is mounted on a segment of the track from ODU’s 

3600 foot Maglev guideway. This vehicle has been 
built to represent one of the two bogies underneath 
the Full-scale maglev vehicle at ODU. Current is sent 
into each of the six electromagnet coils through the 
PWM amplifiers. Six eddy-current based position 
sensors and six accelerometers are used to measure 
the vertical positions and vertical accelerations of the 
magnets respectively. An 8-pole butterworth anti-
aliasing filter along with a digital low-pass filter is 
used to filter the noise in the signals. A National 
Instruments data acquisition card installed in a 
PC104-Plus computer is used for data acquisition and 
control. The data acquisition system is operated 
through Matlab/Simulink, using the xPC Target 
environment. Relevant system parameters are listed 
in Table 1.  The sample rate is 10 kHz. 
 

 
Figure 1 ODU Test vehicle in the laboratory. 
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Table 1. ODU Test Vehicle Parameters 

Detail Value Units
Mass 2.267×103 kg
Length  3.65 m
Width 1.52 m
Height  0.91 m
Mass moment of Inertia ( xxI ) 2.955×103 kg.m2

Mass moment of Inertia ( yyI ) 3.842×103 kg.m2

Mass moment of Inertia ( zzI ) 1.207×103 kg.m2

Desired Magnetic Gap 0.01 m
No. of Magnets 6 -
No. of Amplifiers 6 -
No. of LIMs 2 -
No. of Turns per magnet  596 -
Resistance of the magnet coil  1.83 Ω
Inductance of the magnet coil  0.68 H

 
3 MATHEMATICAL MODELING 

3.1 Structural Model 
 
The dynamic model of the vehicle includes rigid 
body and structural vibration modes. As a rigid body, 
it has 5 degrees of freedom – 2 in translation and 3 in 
rotation. Motion along the axis of propulsion is not 
modeled. As a flexible body (continuous system), it 
has infinite degrees of freedom (modes). However, 
here only few flexible modes are retained for the 
purposes of model development. The vehicle uses six 
electromagnets for levitation, and for the purposes of 
modeling the forces given by each magnet in both 
lateral and levitation directions are considered. The 
moments caused by these forces about the center of 
mass of the vehicle are also considered. A Finite 
Element (FE) structural model for the vehicle has 
been developed, from which the mass and inertia 
properties, basic geometry, location of the magnets 
with respect to the center of mass are obtained. Also 
obtained from the FE model are the mode shapes, 
(modal matrix or the matrix of eigenvectors) and 
eigenvalues (natural frequencies of vibration) of the 
vehicle for selected modes. The dynamics of a 
generic flexible structure with rigid body modes and 
a finite number of flexible modes of vibration can be 
modeled as [1] 
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ms is the total mass of the structure times a 3×3 
identity matrix (for translations along X, Y and Z 
directions), Js is the 3×3 moment of inertia matrix, Ik 
denotes the  k×k identity matrix, and nq is the number 
of flexible modes of vibration retained. 
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 and αv  represent respectively, the rigid body 
translation and rigid body rotation vectors, mqv  is the 

1×qn  modal amplitude vector (modal co-ordinate 
vector). 
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=sC diag ]00[ 33 qq nn ×Λ  (4b)
  

Here D  is the qq nn × symmetric matrix representing 
the inherent structural damping, and k0 denotes the 

kk × null matrix, Λ  is the diagonal matrix of squared 
elastic mode frequencies, and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΨΨΨ

=Γ
T
m

TT
m

T

f

f
rrr
III

L

L

L

21

21

333
~~~  (4c) 

For the test vehicle, 6=fm  is the number of applied 
forces, Ψ  is the 3 fm × qn  mode shape matrix, ir~  
represents a 3 × 3 skew symmetric matrix that serves 
as a cross product operator for the position vector of 
the thi  force applying actuator. This means, for 
example, that the moment caused by the thi force 

if
r

about the center of gravity of the vehicle can be 
written as  
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where ir
v  is the position vector for the thi force 

applying actuator and iM
v

is the corresponding 
moment vector. 
 
u  is the input vector of applied forces, given by  
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Considering the translational and rotational 
displacements and their rates at the sensor locations 
as the outputs, it is seen that the output vector is 
given by  

py p
vv Γ=  (6) 

 



3.2 State-Space Model 
 
Defining the states as the rigid body and flexible 
displacements and velocities, the state vector is 
constructed as 

[ ]TT
m

T
rb

T
m

T
rb qxqxX &v&vvvv

=  (7a) 

The state-space model, therefore can be cast as 
follows: 
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where uv  and Y
v

are given in Eqs (5) and (6) 
respectively, and  
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The rows and columns of the A matrix are selected 
from the general A matrix given in Eq. 7c, depending 
on the desired degrees of freedom to be modeled. 
Depending on the desired force inputs (levitation 
only, lateral only, or both) to the vehicle, the 
corresponding columns of the B matrix should be 
selected. Similarly, depending on the desired outputs 
of the model (levitation gaps only, lateral offsets only 
or both) the corresponding rows of the C matrix are 
selected. 
Using the FE model, one can obtain the mass and 
inertial properties of the structure, the natural 
frequencies of vibration (eigenvalues) and the mode 
shapes (eigenvectors). Node numbers corresponding 
to the magnet and sensor positions are used to obtain 
the input-output dynamics of the vehicle in terms of 
transfer functions. The frequency response 
corresponding to the colocated transfer function for 
each input/output pair of the vehicle structure as 

obtained from the FE model is shown in Figure 2. 
These are the transfer functions for the force input to 
position output at each magnet location. 
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Figure 2 Colocated Structural Transfer Functions: Force to 
Position 

3.3 Electrodynamics 
 
The Electromagnetic levitation force is known to 
depend on the current supplied and the magnetic gap. 
This relationship which is non-linear, depends on the 
configurations of the magnet core and the track. For 
the configuration of the magnets on the ODU test 
vehicle, an appropriate levitation force expression for 
the ith electromagnet (assuming zero lateral offset) is 
[3], [4] 
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In the above expression, zi and Ii represent the gap 
and current at the ith electromagnet. µ0, d, N, w 
represent respectively permeability of air, length of 
the magnet core, number of turns in the coil and the 
width of the magnet core. Similarly, the inductance 
of the ith coil can be expressed as  
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The non-linear expression for force in Eq. (8) is 
linearized about the operating point (z0, I0). This 
linearized equation can be written as 
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Electromagnets are driven by PWM power (current) 
amplifiers, and these amplifiers follow a current 
command Ic with a current feedback gain Ka. With 
this, the governing equation for the ith 
electromagnetic circuit can be written as  
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3.4 A complete Linear Model 
To incorporate the electrodynamics into the dynamic 
model of the vehicle, define the new state vector as 
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 is as given in Eq. (7a), and 
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Therefore, the new state-space model can be written 
as  

XCY
uBXAX

vv

vv&v

~~~
~~~~~

=

+=  (13) 

The input vector will now be 
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The parameters can be arranged in matrices as 
follows: 
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With this the state-space parameter matrices become:  
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Colocated transfer functions between current input 
and position output for each magnet are shown in 
terms of frequency response in Figure 3. 
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Figure 3 Colocated Transfer Functions: Current to Position 
 
4 CONTROLLER DESIGN AND SIMULATION 
 

4.1 Controller Design  
 
A Decentralized PD controller is designed for each of 
the six magnets, based on the linear dynamic model 
given in Eqs. (13) – (16). These controllers are 
independently designed using Matlab. As an 
example, the root locus of the system with input 
levitation force on Magnet #1 and the output as the 
levitation gap of Magnet #1 is shown in Figure 4. The 
corresponding PD controller used is:  
 

sKKsC dp +=)(  (17) 

These controllers are implemented in real-time 
levitation of the vehicle, and are fine-tuned for better 
performance based on the experimental results. In 
practice a slow integrator term is added to reduce 
steady state error. 
 

4.2 Numerical Simulation 
Numerical simulation of the closed-loop non-linear 
dynamics of the vehicle is carried out using Simulink. 
A schematic illustrating the simulation scheme is 
shown in Figure 5. The controllers used for the 
simulation are the same as the ones used in the real 
time experiments. 
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Figure 4 Root Locus for Typical PD Control Loop 
 
 
The simulation model is implemented in discrete 
time, since the real time data acquisition and control 
is in discrete time. A finite number of flexible modes 
are included in the simulation. The results presented 
here include 4 vibration modes. 
 
 
5 RESULTS 
 
Figures 6 and 7 show the comparison between 
experimentally obtained data and simulation data. 
The vehicle was levitated using the four corner 
magnets, which are designated as magnets 1, 2, 5 and 
6. Magnetic gaps at each of the four magnets, and the 
current input to the magnets are shown. From these 
results, it can be seen that the simulated dynamics 
closely match the dynamics of the physical system. 
 

 
Figure 5. Simulation Block Diagram 
 

6 CONCLUSIONS 

This paper has presented a dynamic model for a 
maglev test vehicle under development at Old 
Dominion University. Experiments have been 
conducted which serve to validate the model. The 
model, which includes rigid body and flexible modes, 
can be used to evaluate stability, ride quality and 
disturbance response characteristics of the vehicle. 
Since stability of maglev systems with structural 
flexibility is of particular interest, future plans 
include the incorporation of a model for guideway 
flexibility.  
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Figure 6 Gap Response Comparison 
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Figure 7 Input Current Comparison 




