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Abstract 
 
A method for the analytical evaluation of the propulsion force of an EMS Maglev transportation 
system is presented. The method, based on the reconstruction of the field through superposition of 
solutions of simple fields (exact - conformal transformations - or approximate), allows to take into 
account  the slots and the interpolar geometry of the ferromagnetic structures, together with the real 
m.m.f. distribution. The study is applied to an example of system equipped with six-pole levitators and 
with a three-phase stator winding with one slot/(pole-phase): the analytical solution, that leads to the 
determination of the propulsion force on the vehicle, is compared with the results of Finite Element 
Method simulations (FEM).  
 

1. Introduction 
The study of the behaviour of electrical machines is usually performed according to two approaches: 
analytical (phasor models, Park equations) or numerical (FEM simulations). The first one allows a 
quick analysis of the machine behaviour both in transient and in sinusoidal or distorted operation, but 
it ideally considers smoothed ferromagnetic structures; if instead a more realistic modelling of the 
field distribution is required, taking into account the actual structure conformation and the real 
distribution of the conductors, it is necessary to employ numerical solutions, definitely more time 
consuming, and however not always well suited to allow a general approach and to perform parametric 
analyses. 
A method that models in analytical form the ferromagnetic structures slotting and the distribution of 
the conductors is proposed, suited to take into account these effects in the calculation of the quantities, 
in any operating condition (transient or steady state), both in design stage and with the aim of control.  
This method is applied here to the calculation of the propulsion force on one levitator of a linear 
synchronous motor of an EMS Maglev transportation system; indeed, in this type of machine, the 
slotting and the end effects are very intense, for the particular geometry of the armature structure 
(wide, open slots, with low number of slots/(pole/phase)) and for the discontinuities introduced by the 
separated levitators. Up to now, the model does not consider the transversal edge effects: thus, also 
FEM simulations concern 2D analyses. 
 

2. Field Model  
Consider the stator and the slider of an iron-core linear electric machine, where x is the coordinate of a 
point in a reference frame fixed with the stator, y the coordinate of the same point in a reference frame 
fixed with the slider, z the relative position between  the two systems; it results therefore x = y + z.  
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In a previous paper [1], concerning a rotating machine, it has been shown that, in the hypothesis of 
magnetic linearity (infinite permeability of the ferromagnetic material), the normal component of the 
field over a surface disposed at half air-gap width, in a transversal section of the machine, is 
excellently represented by an expression of the type 

 ( ) [ ]0( , , ) µ ( , ) ( , ) β ( ) β ( )= ⋅ + ⋅ ⋅S R S RB x y t g M x t M y t x y ,     (1) 
where the symbols have the following meaning: µ0 = vacuum permeability; g = geometric air-gap 
width; MS(x,t), MR(y,t) are functions that express the instantaneous distributions of the m.mf.s 
respectively produced by the windings of stator and rotor; βS(x) and βR(y) are defined “field functions”, 
because they express the behaviour of the field in the air-gap due to the ferromagnetic singularities of 
one structure (slots, interpolar zones), considering smoothed the other structure, and vice versa. In the 
following the expressions of such functions are given, considering that, for a linear synchronous 
machine, the subscript R (rotor) should be more correctly replaced with f (field).  
For the field functions βS(x) e βf(y), their origin is resumed [2], [3]. The following quantities are 
defined:   
- ideal flux density Bi: flux density that would exist between two smoothed and indefinite 

ferromagnetic structures, separated by an air-gap width g and submitted to a difference of magnetic 
potential U;  

- lost flux density Bp(x) of a real structure (not smoothed), faced to a smoothed one: difference 
between Bi and the actual flux density B(x), determined along the smoothed structure in presence of 
the real structure;  

- field functions β(x), βp(x): ratio between the actual flux density and the ideal one, and between the 
lost flux density and the ideal one: β(x) = B(x)/Bi = (Bi – Bp(x))/Bi = 1 −  Bp(x) / Bi = 1 −  βp(x).  

In a multipart ferromagnetic structure, consisting of several basic structures (a lot of slots, a lot of 
poles), the principle of superposition of the lost flux density is valid: the total lost flux density in the 
multipart structure is equal to the sum of the lost flux density functions in the single basic structures, 
suitably space displaced along the periphery; besides, the real flux density of the multipart structure is 
obtainable as difference between the ideal flux density and the total lost flux density.  
Thus, in order to obtain the field function of a multipart structure, the following procedure can be 
adopted:  
- through analytical study (conformal transformations), the expression of the flux density is obtained 

in the basic structure; usually, a parametric expression is gained: therefore, to have an explicit 
function, it is necessary to use an interpolating function (the simplest is a spline function); in 
alternative, the required function can be constituted by an analytical, approximating expression, for 
instance fitting the course obtained by a FEM solution;  

- the lost flux density of the basic structure is obtained; the single lost flux densities are added for 
drawing the lost flux density of the multipart structure; the real flux density of the multipart 
structure is calculated;  

- the ratio between the actual flux density and the ideal one gives the required field function.  
For the field functions βS(x) and βf(y), the basic structures used are respectively the single slot with 
indefinite depth and the half-pole of indefinite extension, because for such cases the analytical 
solutions are known. 
In the following, the m.m.f. functions will be examined. In the general case of a stator three-phase 
winding (p = 1, 2, 3, phase index), with Nt = N° turns/coil, a = N° of parallel paths, and with a field 
winding equipped with Nf  = N° turns/(field coil), the following expressions are valid: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
1,2,3

, 1 2 3    ;       ,  S t pS p f f f f
p

M x t N a m x p i t M y t m y N i t
=

= ⋅ − − ⋅ τ ⋅ = ⋅ ⋅∑  ,       (2) 

where mpS(x), mf(y) are the functions that express the space distribution of the f.m.m. respectively 
produced by a stator phase and by the field winding; ip(t), if(t)  are the stator phase currents and the 
field current; τ is the pole pitch.  
The stator phase m.m.f. is given by the sum of the m.m.f.s mm(x) produced by the single coils; the 
function mm(x) can be expressed through a hyperbolic tangent function, that repeats its shape with a 
space period equal to the double coil pitch; for an integer pitch coil, the space period reduces to the 
double pole pitch:  

 ( ) ( )( )tanh cos= ⋅ π ⋅ τm mm x k x ;     (3) 
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the coefficient km should be set considering the inclination of the curve, so as to approach the course of 
the field in the zone in which the m.m.f. passes from one level to the other.  
The field m.m.f. is a square wave with unitary amplitude, also characterised by a period equal to the 
double pole pitch; defined a step function σ(y) as: 

 σ(y) = 1 for y ≥ 0,         σ(y) = 0 for y < 0,     (4) 
the field m.m.f can be expressed as follows:  

 1( ) cos 2
2f

ym y
   = σ π − ⋅   τ   

 .     (5) 

The reason for the different model of the functions mm(x) and mf(y) requires some explanations (for 
further close examinations, please see [1]). Let us consider a slot containing a conductor and the 
course of the flux density (or the course of the corresponding field function), along a faced, smoothed 
structure. 
If the current does not flow in the conductor, the field βslot(x) in front of the slot has a “basin”-like 
course while, in presence of current, the course is increasing (curve βslot+curr(x)); the point to point ratio 
βslot+curr(x)/βslot(x) can be interpreted as the contribution due to the current only (curve βcurr(x)) and it 
results to have, with good approximation, a course approaching a hyperbolic tangent.  
Now, considering that the armature conductors are not always interested by current (in some instants 
of operation, or during the no-load operation), it is opportune to separate the effects due to the currents 
from the effects due to the slotting of the structure: therefore, for the stator we have chosen to insert in 
the field function βS(x) the slotting effect only, attributing the effect of the presence of currents to the 
m.m.f., that for this reason shows a course like a hyperbolic tangent. 
Instead, the field winding is always interested by current and therefore the two effects are not 
distinguished: thus, both are attributed to the field function βf(y), leaving the m.m.f. with step-like 
course. However, one can observe that the hyperbolic-like course is an inherent property of the flux 
density, and the armature m.m.f. should be represented by a step-like course: the adoption of a 
hyperbolic-like course for the m.m.f. is due only to a convenience of the model. 
The use of such a method allows a satisfactory reconstruction of the field at the air-gap: as anticipated, 
such flux density is assumed as representative of the normal component of the field distribution along 
the line at half air-gap width of a transversal section of the system.  
As regards the waveforms of the described quantities, see [2], [3], [4]. 
 

3. General expression of the electromagnetic force of a synchronous   
machine 

As known, the electromagnetic tangential force of an electrical machine can be expressed as the 
derivative of the co-energy with respect to the position z of the moving part; in the hypothesis of 
magnetic linearity (negligible iron core magnetic voltage drops), the co-energy coincides with the 
magnetic energy, thus it can be evaluated as the integral of the energy density in the air-gap volume. If 
the additional assumption of invariance of the energy density in the radial and transversal directions is 
assumed, the volume integral can be reduced to a line integral along the x stator coordinate, by 
extracting the air-gap g and the transversal size ℓ out of the integral. The integral should be extended 
along the whole periphery L of the machine. 
Thus, the force expression is given by: 

( ) ( ) ( )2

0 0

, ,,
,

2

  −∂ ∂   = = ⋅ ⋅ ⋅  ∂ ∂ ⋅µ   
∫l

L B x x z tW z t
F z t g dx

z z
  ;    (6) 

carrying the ∂/∂z operator under the integral operator ∫(⋅)dx, and observing that ∂f(x−z)/∂z = − 
∂f(x−z)/∂x, equation (6) becomes: 

( )
( )

( ) ( )2

0 00 0

, , , ,
, , ,

2

  − ∂ − ∂ ⋅  = ⋅ ⋅ ⋅ = − ⋅ − ⋅ ⋅   ∂ ⋅µ µ ∂     
∫ ∫

l
l

L LB x x z t B x x z tgF z t g dx B x x z t dx
z x

.    (7) 
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Called λg the following quantity: 
0λ = µ ⋅lg g ,         (8) 

by developing eq. (7) and putting ∂(⋅)/∂x = Dx(⋅), the following three force contributions derive: 
- mutual force, due to the simultaneous existence of stator and field m.m.f.s: 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
2

0

,
,

2 , ,

 ⋅β ⋅β − ⋅ = −λ ⋅   ⋅ ⋅ − ⋅ β − + β − ⋅ − 
∫

S fL S
m g

f x f f x f

M x t x x z
F z t dx

M x z t D x z x z D M x z t
  ;   (9) 

- stator slotting reluctance force, to which the force reduces in case of zero field m.m.f.: 

( ) ( ) ( ) ( ) ( )( )2 2
0

, ,= −λ ⋅ ⋅β ⋅β − ⋅ β −∫
L

S g f x fS SF z t M x t x x z D x z dx   ;     (10) 

- field (levitator) slotting reluctance force, to which the force reduces in case of zero stator m.m.f.: 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
2

0

,
,

, ,

 − ⋅β ⋅β − ⋅ = −λ ⋅   ⋅ − ⋅ β − + β − ⋅ − 
∫

f fL S
f g

f x f f x f

M x z t x x z
F z t dx

M x z t D x z x z D M x z t
  .    (11) 

The integration of eq.s (9), (10), (11) appears cumbersome, due to the heavy expressions of the 
quantities, and because a different integration solution seems to be required for each instantaneous 
position z(t); moreover, the time dependence of the m.m.f.s (2) seems to complicate the evaluation; 
actually, it is possible to extract the time dependent factors out of the integrals, leaving inside just the 
space dependent terms; thus: 

( ) ( ) ( ) ( ) ( )
1,2,3

,
=

= −λ ⋅ ⋅ ⋅ ⋅ ⋅∑m g t f f p mp
p

F z t N a N i t i t Y z   , with     (12) 

( )
( )( ) ( ) ( )

( ) ( ) ( ) ( )( )
2

0

1 2 3

2

 − − ⋅ ⋅ τ ⋅β ⋅β − ⋅ =   ⋅ ⋅ − ⋅ β − + β − ⋅ − 
∫

pS fL S
mp

f x f f x f

m x p x x z
Y z dx

m x z D x z x z D m x z
  ;         (13) 

( ) ( ) ( ) ( ) ( )2

, 1,2,3
,

=
= −λ ⋅ ⋅ ⋅ ⋅∑S g t p u Spu

p u
F z t N a i t i t Y z   , with     (14) 

( ) ( ) ( ) ( ) ( ) ( )2
0

2 21 1
3 3

 τ τ    = − − ⋅ ⋅ − − ⋅ ⋅β ⋅β − ⋅ β −    
    

∫
L

Spu pS f f x fSY z m x p m x u x x z D x z dx  ;         (15) 

( ) ( ) ( )2 2,f g ff fF z t N i t Y z= −λ ⋅ ⋅ ⋅   , with      (16) 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
2

0

 − ⋅β ⋅β − ⋅ =   ⋅ − ⋅ β − + β − ⋅ − 
∫

f fL S
f

f x f f x f

m x z x x z
Y z dx

m x z D x z x z D m x z
  .        (17) 

Equations (12)-(17) suggest the following remarks: 
- the space dependent functions Ymp(z), YSpu(z), Yf(z) (p, u = 1,2,3) can be evaluated off line just 

once, for a suited number of position z values, subsequently interpolating the calculated points; thus, 
when the time dependence is to be taken into account, these space quantities can be considered as 
known functions;  

- Ymp(z), YSpu(z), Yf(z) are able to correctly model the local stator and slider slotting field effects 
(including the effects of partial slot facings [1]), and the actual field and armature winding 
structures: this property ensures an accurate modelling of all the force harmonic contributions, 
including the well known toothing and cogging force harmonics, particularly noisy in both rotating 
and linear synchronous machines; 

- of course, the adopted approach is rigorously valid just supposing perfectly unsaturated operation, 
because it implies the application of the superposition principle;  

- moreover, it should be noted that, in general, no closed forms can be directly found for Ymp(z), 
YSpu(z), Yf(z) and a numerical integration is required; on the other hand, usually the complexity of 
the involved functions makes quite heavy the direct calculation of the integrals. Indeed, all the 
terms in eq.s (13), (15), (17) depend on the space integral of the m.m.f.s distribution, of the field 
functions and of their derivatives; field functions derivatives are zero, except around the slot and 
interpolar openings, where sharp, wide variations occur: this pulse-wise behaviour makes 
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troublesome the numerical evaluation of the integrals; a great simplification is achieved if the 
integrand functions are developed in Fourier series, because, once obtained sinusoidal functions 
products, the integral can be solved analytically. 

 

4. Expression of the electromagnetic force for the examined Maglev 
system 

Let us consider now a six-pole levitator of a EMS Maglev vehicle faced to the stator (fig.1). 
In this case, the energy integral should be extended to the whole extension of the levitator, between 
two interpolar axes, i.e. from the interpolar axis preceding the first levitator pole, to the interpolar axis 
following the last pole of the considered levitator; in the examined case, this extension equals six pole 
pitches, thus the integral is extended from 0 to 6⋅τ. On the basis of these considerations, it follows: 

 ( ) ( )
6

2 2

0 0 0

1 , , , ,
2 2

∂ ∂ ⋅ ∂
= = ⋅ = ⋅ −

∂ ∂ ⋅ ⋅ ∂∫∫∫ ∫
l

lev lev
V

gF W B x y t dV B x x z t dx
z z z

τ

µ µ
.  (18) 

The expression of the flux density to be introduced in the integral is given by eq.(1), detailed for the 
case under analysis (the system has one slot/(pole-phase), therefore Nt =1, a =1).  
It should be observed that, in the developed analysis, a machine without relative inclination among 
stator slots and levitator pole shoes has been considered; this situation is not realistic, because usually 
the levitator pole shoes are inclined with respect to the stator teeth, in order to reduce the slotting 
effects. Nevertheless, this inclination has not been considered here: in fact, the intent is to show the 
method soundness in a case that, besides the simplicity, has the property to present more evident 
slotting effects. In case the pole shoe - slots inclination is of interest, it is possible to transversally 
subdivide the machines in several “slices”, each without any inclination, but spatially displaced with 
respect to the others, in the motion direction. 

 
Fig.1: schematic of the analysed EMS Maglev system: Nf⋅if = 6 kA; i1 = 0; i2 = (√(3/2))⋅800 A;  i3 = − i2. 
Maglev system main sizes [mm]: pole pitch: 300; slot width = tooth width = 50; central pole shoe width = 
200; ext. pole shoe width = 150; air-gap width = 10; transversal lamination stack length (per side) = 200. 

 

5. Holding Force Evaluation 
As an example of application, the holding force will be evaluated, i.e. the force produced during the 
vehicle movement, with all the currents imposed and constant: even if this operating condition is not 
realistic for the Maglev system, it allows to estimate the soundness of the described analytical method. 
In this case, the time variable included in the stator m.m.f. should be considered equal to a fixed value 
t0; therefore, this m.m.f. becomes a function of the coordinate x only; for this reason, in the following 
it will be indicated as ms0(x). 
Putting ŝI the peak value of stator phase current, and If = Nf·⋅if(t) = cost the total field current, the flux 
density expression is given by: 

 ( ) ( )0 0
ˆ( , ) µ ( ) ( - ) β ( ) β ( - )= ⋅ ⋅ + ⋅ ⋅ ⋅s s f f s fB x z g m x I m x z I x x z ,   (19) 

and the force acting on one levitator becomes:  
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     (20) 
 

In order to evaluate (20), the following procedure can be adopted: 
- the functions (mso⋅βS)2 , βf

2, βS
2, (mf⋅βf)2, (mso⋅βS

2), (mf⋅βf
2) are developed in Fourier series; 

- βS
2 has a period equal to the slot pitch τS; (mso⋅βS)2 and (mso⋅βS

2) have period equal to the double pole 
pitch 2⋅τ; the other functions have period equal to the extension of the levitator, i.e. 6⋅τ; moreover, τ 
is multiple of τS (with q = 1 slot/(pole-phase), it follows τ = 3⋅τS): thus, all the periodicities are 
multiple each others; 

- finally, remembering that the integral of the product of sinusoidal functions, extended to the whole 
period, is non-zero only if the sinusoidal functions have the same period, one obtains some 
expressions like: 

Σk  f1coef k ⋅ f2coef k ⋅ α(k) ⋅ sin(k,z,t0) 
with f1coef k and f2coef k Fourier series coefficients of the functions f1 and f2, and α(k) constant. 

In the considered case, with ω⋅t0 = π/2, the expressions become: 

 

2 2
  3

2 2
  3

2 2
  18

( ) ( β ) β ( 3 ) sin( )

( ) 2 β β ( 3 ) cos( )

( ) β ( β ) ( 18 ) sin(18 )

css so s fk k
k

csf so s f fk k
k

cff s f fk k
k

J z m coef coef k kz

J z m coef m coef k kz

J z coef m coef k kz

ππ
τ

ππ
τ
ππ
τ

   = ⋅ ⋅ − ⋅   

   = ⋅ ⋅ − ⋅   

   = ⋅ ⋅ − ⋅   

∑

∑

∑

 .  (21) 

 

6. Comparison with FEM solution  
For the FEM solutions [5], a six-pole levitator with the structure shown in fig.1 has been adopted, in 
the following operating conditions: Nf ⋅if  = 6 kA; i1 = 0; i2 = (√(3/2))⋅800 A; i3 = − i2. 
Observing fig.2, the analytical holding force has the expected waveform: a roughly sinusoidal average 
behaviour, with a space period equal to the double pole pitch (2⋅τ) and a ripple with a space period 
equal to the slot pitch (τs). The comparison with the FEM result shows that the analytical solution has 
amplitudes equal or lower than the FEM solution, suggesting that the analytically evaluated 
distribution of the flux density in the air-gap volume is underestimated. Thus, the slotting effect 
modelled by the previously defined field function of the stator lost flux density βpS(x) appears 
overestimated as regards the force evaluation: this is confirmed also by the comparison between the 
magnetic energy stored in the air-gap, because the analytical value results quite lower than the FEM 
value. 
This higher inaccuracy evidenced by the described analytical method for the force evaluation 
compared with the results obtained in a similar situation for the evaluation of the flux density and of 
the e.m.f. in the stator winding [4] can be justified as follows: to the aim of the e.m.f. evaluation, the 
flux linkage calculation is performed by line integration along the line at half air-gap width, where the 
field is reproduced accurately; on the contrary, the electromagnetic force depends on the energy in all 
the air-gap volume; in fact, as experimented with FEM simulations, the dependence of the flux density 
on the radial coordinate is not negligible, whilst this dependence has not been analytically modelled. 
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Thus, a correction coefficient ηs has been looked for, to be applied to the stator lost flux density 
function. On the basis of the equivalence between the analytically evaluated air-gap energy WANAL and 
the FEM evaluated air-gap energy WFEM, a particular situation has been considered: a single slot is 
faced to a smoothed structure. Remembering that the actual flux density is the difference between the 
ideal flux density and the lost flux density, the value of the searched coefficient ηs can be obtained by 
solving the following equation: 

 ( )
/ 2

2

0/ 2

1 η
2µ

s

s

ANAL i s p FEMW B B x g dx W
−

 ≡ ⋅ − ⋅ ⋅ ⋅ ⋅ = ∫ l
τ

τ

.    (22) 

In the examined case ηs = 0.58 has been obtained; by inserting this correction factor, the agreement 
between analytical and FEM solutions is greatly better (fig.3). 
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z/τ
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Fig.2: comparison between analytically and FEM evaluated holding force, without correction of βs(x) 
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Fig.3: comparison between analytical and FEM holding force, with correction of βs(x) (ηs = 0.58) 

 

A quantitative index of the deviation between the curves of the two considered cases is given by the 
average error ε over the pole pitch, expressed as a percentage, referred to the rms value of the FEM 
evaluated force: 
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0

2

0

1 ( )

1

ANAL FEM

FEM

F F dx

F dx

−
=

∫

∫

τ

τ

τε

τ

.     (23) 

Without the use of the correction coefficient, one obtains ε = 15.1%, while, introducing the evaluated 
correction factor (ηs = 0.58), the error greatly decreases, becoming ε = 0.8%. 
 

6. Conclusion 
A method has been illustrated for the analytical evaluation of the waveform of the propulsion force of 
an EMS Maglev system. The method, based on the reconstruction of the field through suited field 
functions, allows to take into account the field distribution due to the slotting of the ferromagnetic 
structures and to the actual m.m.f.s. The obtained analytical solution has been compared with the 
results of FEM simulations, getting good agreement both in the waveforms and in the numerical 
values.  
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