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Abstract 

Thrust control of the Permanent Magnet Linear Synchronous Motor (PMLSM) depends on the 
knowledge of the back electromotive force (EMF). To deal with a non-sinusoidal back EMF, the 
multiple reference frame theory can be applied, but it requires too much calculation. Thus, this paper 
proposes a simpler solution by using the multi-frequency resonant controllers in the stationary 
reference frame. With adaptive coefficients according to the input current frequency, the resonant 
controller can perfectly regulate the AC input current with variable frequency. To reduce the thrust 
ripple, an algorithm of generating the reference currents from the reference thrust is suggested to 
compensate for the non-sinusoidal back EMF. The simulated and experimental results demonstrate the 
efficiency of the proposed approach. 
 

1 Introduction 
With universally recognized advantages, the linear motors have been widely used in the transport and 
industrial fields. The field-oriented control with simple PI controllers in synchronous d-q reference 
frame has been applied to the Permanent Magnet Linear Synchronous Motor (PMLSM) and gave quite 
satisfactory performances [1]. However, it was assumed that the back EMF of the PMLSM is 
sinusoidal, and furthermore, the effects of stator inductance saliency have not been taken into account. 
Both of these neglected aspects will produce thrust ripple, especially the non-sinusoidal back EMF. In 
this condition, to achieve high-performance motion control and get smooth thrust force, non-sinusoidal 
currents need to be injected into the PMLSM [2]-[5]. 
 
The hysteresis controller can approximate the desired current waveforms [6] [7]. However, its major 
drawbacks lie in variable switching frequency and heavy interference among the phases in case of 
three-phase systems with isolated neutral. Furthermore, the tracking errors introduce undesired current 
harmonics that not only result in loss of optimal efficiency, but also in increased thrust ripple. 
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d’Electronique de Puissance de Lille (L2EP), ENSAM, 8 Bd Louis XIV, 59046 Lille Cedex, France, Tel: +33 3 
20 62 22 46, Fax: +33 3 20 62 27 59 (e-mail: barre@lille.ensam.fr).  This team is constituted of teachers - 
researchers of the L2EP, but also the LAIL and the LML. 
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The Multiple Reference Frame (MRF) theory has been applied to the control of the Permanent Magnet 
Synchronous Motor (PMSM) with non-sinusoidal back EFM, and satisfactory performances have been 
obtained [8] [9]. This theory was also suggested to control the PMLSM with salient inductances [10] 
and with non-sinusoidal back EMF [11]. A control scheme using Multiple Reference Frame 
Synchronous Estimator/Regulator (MRFSE/R), as shown in Fig. 1, is proposed in [11]. All the 
components of the harmonics of interest dqki  are estimated from the measured currents abci  by the 
MRFSR. The MRFSR can regulate these components so that dqki  follows their respective references 

*
dqki . However, the major drawback of this approach lies in the large computational effort needed to 

establish the multiple reference frames: two coordinate transforms are required for every harmonic 
component. In even worse cases, to deal with the unbalanced condition, the number of reference 
frames should be doubled because the harmonics may appear both in positive and negative sequences. 
Furthermore, the control performances also depend on the accuracy of harmonic Fourier coefficients. 
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Fig. 1. Block diagram of thrust control of the PMLSM using Multiple Reference Frame Synchronous Estimator/Regulator. 

 
In this paper, we will propose another approach based on the use of the resonance controller. This type 
of controller was first presented in [12] for the control of a PWM rectifier. Many research works have 
contributed to this subject in the last few years [13]-[17]. By associating an arbitrary number of 
resonant elements in series, the multi-frequency resonant controller can get infinite gains at the 
selected resonant frequencies in the open-loop system, thereby completely eliminating the steady-state 
control errors of the fundamental component as well as the harmonics components at the same 
resonant frequencies. 
 
Usually, the feed of the PMLSM requires variation of the load current frequency. To guarantee the 
dynamic control performances, all coefficients of the resonant controller should be adjusted according 
to the input current frequencies. By this means, the regulated current can perfectly follow its reference 
after a short transition, even if the frequency of the reference current varies with time. 
 
In this paper, after the modeling of a three-phase-three-line PMLSM with non-sinusoidal back EMF, a 
thrust control scheme is set up in the stationary α β−  reference frame. To reduce the thrust ripple 
caused by the harmonics of the magnet flux, the reference currents deduced from the reference thrust 
are investigated and suggested by this paper. By using the multi-frequency resonant controllers, the 
load currents in the PMLSM can perfectly follow the proposed non-sinusoidal current references, and 
thereby, significantly reduce the thrust ripple of the PMLSM. 
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2 The PMLSM Model in the Stationary α - β  Reference Frame 
In this section, we set forth a machine model for a three-phase-three-line PMLSM with a non-
sinusoidal back EMF. We assume that the PMLSM exhibits no effects of saturation or 
demagnetization and that the back EMF waveform is half-wave symmetric and thus has no even 
harmonics. Fig. 2 depicts the simplified schematic of a short primary iron core PMLSM. Mechanical 
position and speed of the primary are denoted by x  and v , respectively. The electrical angle and 
angular speed, eθ  and ω , are defined as pN  times the corresponding mechanical quantities, where 

/pN π τ=  is the electrical position constant of the PMLSM ( τ : step between two consecutive 
magnetic poles of secondary) [18]. 
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Fig. 2. Simplified schematic of the PMLSM. 

 
The stator voltage equations may be expressed as: 
 

[ ] [ ] [ ] [ ] .abc
abc abc

d
V R i

dt
φ

= ⋅ +   (1) 

 
where R  denotes the stator resistances; abcV , abci  and abcφ  represent the voltage, current and flux 
linkage vectors, respectively. 
 
Neglecting the inductance saliency (surface-mounted permanent magnet PMLSM), phenomena of 
longitudinal end-effects, and assuming that the back EMF is half wave symmetric, the stator flux 
linkage equations may be expressed as: 
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abcL  is the stator inductance matrix and ˆ

fφ  denotes the maximum value of magnetic excitation flux per 
phase in a stationary a-b-c frame. The coefficients 2 1nλ −  represent the relative magnitude of the (2n-
1)’th magnet flux harmonic. These coefficients are normalized by the fundamental component such 
as 1 1K = . 
 
The three-phase components in (1) can be transformed into equivalent orthogonal αβ  components 
through the abcαβ −  conservative transformation. The relations between the abc  components and the 
αβ  components are given by: 
 

[ ] [ ] [ ] [ ] [ ] [ ]1and .abc abcf T f f T fαβ αβ
−= ⋅ = ⋅   (4) 
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Then, the stator voltage equations in the α β−  reference frame can be expressed by: 
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By using coenergy techniques and neglecting the cogging phenomena, the thrust generated by the 
PMLSM may be derived as: 
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Furthermore, although the triple harmonics are non-zero quantities, they have no contributions to the 
overall thrust (since { }
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3 Thrust Ripple Reduction Strategy 
The studied PMLSM in this paper is an INDRAMAT prototype with a nominal power of 12 kW and a 
nominal linear speed of 185 m/min, other parameters are listed in TABLE I. The relative magnitudes 
of the magnet flux harmonics are identified through spectral analysis of the back EMF. Because the 
neutral of the motor is not accessible (three-phase-three-line), those of the triple harmonics can not be 
identified well and truly. However, since they have no contributions to the overall thrust force, as 
described in (10), we don’t need these values in the thrust control. 
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TABLE I. SPECIFICATIONS OF THE STUDIED PMLSM 

PMLSM parameters Values Parameters Values 

Stator inductance 16.2 [ ]L L mHα β= =  1 1λ =  

Stator resistance 1.1[ ]sR = Ω  3λ  is unidentified 

Max value of magnet flux per phase ˆ 0.65 [ ]f Wbφ =  5 0.02667λ = −  

Pole Pitch 37.5 [ ]mmτ =  7 0.0004234λ =  

Electrical position constant 183.8 [ ]pN mm−=  9λ  is unidentified 

Mass of mobile part 235 [ ]M Kg=  

Relative 
magnitude of 
the magnet 

flux 
harmonics 

11 0.0004589λ =  

 
When neglecting the effects of magnet flux harmonics (supposing the back EFM to be sinusoidal), the 
reference currents, *iα  and *iβ , are sinusoidal and can be deduced from the reference thrust *

eT , as 
expressed in (11).  
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By substituting these expressions for the currents ,i iα β  in (10), we notice that thrust ripples will be 
introduced by the nonzero magnet flux harmonics coefficients iλ . Therefore, it is necessary to modify 
the reference currents to reduce these ripples. The thrust ripples caused by the 7th and 11th harmonics 
are very slight, 0.3% and 0.5% respectively, whereas that of the 5th harmonic should not be neglected 
(13.3%). In consideration of the control performance and reducing computation effort simultaneously, 
we only take the 5th harmonic into account in our control law. As a consequence, (10) can be 
simplified into: 
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And the reference currents, with which the thrust ripple can be completely eliminated from the 
generated thrust eT  in (12), can also be deduced from the reference thrust *

eT  and given by (13): 
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4 Multi-Frequency Resonant Controller 
Resonant controller has been proved effective for AC current control in the stationary reference frame 
[12]-[17]. The multi-frequency resonant controller, which is used to regulate the non-sinusoidal signal, 
can be created by associating an arbitrary number of resonant elements in series. The aim is to get 
infinite gains at the selected resonant frequencies iω  in the open-loop system, thereby allowing the 
steady-state control errors at the same frequencies to be completely eliminated. The transfer function 
of a controller with β  resonant elements associated can be expressed by (14): 
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Fig. 3 shows a current control system using a multi-frequency resonant controller. L  and R  denote, 
respectively, the inductance and resistance of the inductive load. The characteristic polynomial of 
closed-loop system is given by: 
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The coefficients of controller bα  can be determined by using the pole assignment technique – 
identifying the characteristic polynomial (14) by a criterion polynomial as shown in (16): 
 

( ) ( ) ( )( )

{ }
1

.

, ;

GSM i i
i

i

P s s r s r j s r j

r i

β

=

= + + + Ω + − Ω  

Ω ∈ ∈

∏
R N

  (16) 

RLs +
1 si+

-
+ -

sV

*
si

( )

2

0

2 2

1
i

i

b s

s

β
α

α
α

β

ω

=

=

+

∑

∏

 
 

Fig. 3. AC current control system using multi-frequency resonant 
controller. 
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Fig. 4. Pole locations of the closed-loop system 

identified by proposed criterion polynomial. 

 
By this means, all poles of the closed-loop system will be placed on a vertical line in the pole-zero 
map, as shown in Fig. 4. The imaginary parts are given by the values of the resonance frequencies iΩ ; 
the abscissa of this line is offered by r , which determines the dynamic response as well as the stability 
of the control system. Here, we choose i iωΩ =  to control all system zeros around another vertical line, 
therefore minimiziing their influence on system stability.  
 
Fig. 5 reports the magnitude and phase characteristics of the open-loop transfer functions *( ) / ( )s si s i s  
of a current control system as described in Fig. 3, in which a 2-frequency resonant controller is used. 
We observe that large gains are produced at selected frequencies ( , 5p pω ω ), which ensures that the 
steady-state errors for the input current harmonics of these frequencies can be completely eliminated. 
The bode diagram of the closed-loop transfer function (Fig. 6) presents a characteristic of unity gains 
(0dB) and zero phases at the selected frequencies, further confirming that the control system can 
perform zero steady-state error at these frequencies. 
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5 Thrust Control Scheme 
The block diagram of a PMLSM thrust control system in the stationary α β−  reference frame may be 
as shown in Fig. 7, where two multi-frequency resonant controllers are used. The αβ  axes reference 
currents, *iα  and *iβ , are generated by the reference current generator according to the reference thrust 

*
eT  and the position information of the PMLSM primary. The three-phase load currents are measured 

and transformed into αβ  axes, namely iα  and iβ , which are compared with *iα  and *iβ , then 
respectively regulated by a resonant controller. The speed of the primary is also measured and fed into 
the resonant controller. By this means, the coefficients of the controllers can be adjusted according to 
the input current frequency. 
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Fig. 7. Block diagram of thrust control of the PMLSM using multi-frequency resonant controllers. 

 

6 Simulated and Experimental Results 
After simulated investigation by a MATLAB/Simulink based model, the approach that is proposed in 
this paper has been experimentally validated using a laboratory test system (Fig. 8). The control 
scheme, as depicted in Fig. 7, is implemented in DS1005 card and drives a PMLSM prototype from 
INDRAMAT through an IGBT inverter. An incremental encoder is used to detect the primary speed. 
Since a suitable thrust dynamometer was not available, the generated thrust is estimated from the 
measured currents. All specifications of the test system are listed in TABLE I and TABLE II. 
 
Fig. 9 depicts the system control performances obtained by simulation and experiment, where the 
sinusoidal reference currents of (11) are used and applied to the control system. The regulated currents 
follow their references perfectly, as shown in Fig. 9 (b) and (c). Nevertheless, we can observe that a 
ripple of about 15% of the average thrust presents in the estimated thrust. Here, the frequency of the 
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most important component of this thrust ripple is 6 times the current fundamental frequency, which is 
caused by the fundamental current interacting with the 5th harmonic of the magnet flux. 
 
Fig. 10 shows the control performances while the proposed algorithm is applied – the reference 
currents are generated from the reference thrust *

eT  according to (13). As shown in Fig. 10 (b) and (c), 
due to the multi-frequency resonant controllers, the regulated currents can still perfectly follow their 
references, even if they are non-sinusoidal and with a frequency varying with time. From Fig. 10 (a), 
we can see that the thrust ripple of 6 times the current fundamental frequency that presents in Fig. 9(a) 
is completely eliminated. The thrust ripple caused by higher harmonics of the magnet flux is limited 
within 5% in experiment result. It is higher than that of in simulated result (within 1%), since the 
harmonics of the magnet flux higher than 11th has not been taken into account in simulation, 
furthermore, the noises in current and speed measurements may also increase the thrust ripple. Fig. 10 
(d), (e) and (f) show the three-phase currents, linear speed and moved distance of the primary, 
respectively. 
  

 
Fig. 8. Laboratory test system 

TABLE II. SPECIFICATIONS OF TEST SYSTEM 

Selected frequencies 1st, 5th harmonicsResonant 
controller 

Stability margin 1000r =  

DC supply voltage 570 [ ]dcV V=  

Switching frequency of IGBT 10 [ ]KHz  
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Fig. 9. Simulated and experimental results with sinusoidal reference currents from (11). 
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Fig. 10. Simulated and experimental results with non-sinusoidal reference currents from (13). 

 

7 Conclusions 
This paper has presented a novel approach to improve the thrust control performance of a PMLSM 
with non-sinusoidal back EMF. First, an algorithm for generating the reference currents from the 
reference thrust is suggested to compensate for the non-sinusoidal EMF. Next, a multi-frequency 
resonant controller was proposed to ensure the tracking of the desired current waveforms. At last, a 
thrust control scheme of the PMLSM is set forth in the stationary α β−  reference frame. The 
proposed approach has been proven efficient to reduce the thrust ripple of the PMLSM by simulated 
and experimental results. 
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8 Nomenclature 

, ,abc abc abcV i φ Voltages, currents and flux in abc reference frame ,x v  Linear distance and velocity 

, ,V iαβ αβ αβφ  Voltages, currents and flux in αβ  reference frame ,eθ ω  Electrical angle and angular speed  

R  Stator resistances  eT , *
eT Thrust and reference thrust 

abcL  Stator inductances in abc reference frame M  Mass of the primary of the PMLSM 

,L Lα β  Stator inductances in αβ  reference frame pN  Electrical position constant. pN π τ=

ˆ
fφ  Maximum value of magnetic excitation flux per

phase in abc reference frame 
τ  Pole pitch: Step between two

consecutive magnetic poles of secondary 
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