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Vibration Analysis of Elastic-Rigid Coupling EMS Maglev System 
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National University of Defense Technology, Changsha, China 

Abstract: The vibrant characteristics in the direction of vibration of the multi-DOF maglev system 
based on the elastic levitation chassis are studied. The elastic levitation chassis is modeled and 
validated using the finite element method, and the model of the elastic-rigid coupling maglev system is 
obtained. The design method of the suspending controller is introduced and the relationship between 
the control parameters and the characteristic frequencies is given. By comparing the calculating results 
of the elastic-rigid coupling system model, it is proved that the elastic chassis may likely result in the 
internal resonance of the maglev system. 
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1 Introduction 

The dynamic stability of repulsive-force maglev has already been extensively studied in recent 
years[1]~[3], but the subject of vibration when the system is immovably suspending on the guideway 
needs more attention. The vibration may happen for various reasons. It is found out in this paper that 
the levitation chassis, which is designed to be elastic so as to decay the disturbance from the adjacent 
suspending controllers, impacts the dynamic response of the whole system. The aim of this paper is to 
explain the leviation chasis’s elastic effect on the maglev system by analyzing the dynamic model of 
the leviation chasis.  

2 Model of Elastic-Rigid Coupling System 

The maglev is composed of the carriage, the second suspending subsystem, the elastic levitation 
chassis, the electromagnet, the suspending controller and the guideway[4]. The suspending gap is 
maintained by the suspending controller through adjusting the current of the electromagnet 
implemented. Now we give the model of each part. 

2.1 Guideway 

The guideway is described by the Euler-Bernoulli simple beam and its mode response is 
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where w  is the suspending location in the y coordinate, qj is the j-th generalized coordinate, L is the 
span, x0 is the initial position which is corresponding the levitation chassis, β is the equivalent damp, 
ωj is the j-th inherent frequency, ρ is the mass per meter, Fe is the electromagnet force, and n is the 
rank of the mode. 
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Here we assume x0 = L/2 and n = 1, so the guideway dynamic 
differential equation is 
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2.2 Suspending controller 

The electromagnet force is why the guideway and the 
levitation chassis is coupled. The coupling is described as:  
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where ye is the displacement of the levitation chassis in the y 
coordinate, w is the displacement of the guideway, N is the turns of the electromagnet winding, and A 
is the efficient area of the electromagnet. In practice, the real controlled signal is the voltage instead of  
the current of the winding. The relationship of the voltage and the current is described as 
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where U and I are the voltage and current of the electromagnet winding, respectively, and R is the 
resistance. With (4) we can see that the current lags behind the voltage because of the nonlinear 
inductance of the the winding. This is one of the main reasons of the instability of the maglev system. 
In order to make up this delay, we use the cascade method to design the suspending controller[5]. The 
controller is divided into two part, one is the current loop, the other is the suspending subsystem . The 
current loop uses current feedback and suspending subsystem uses gap and velocity feedback. A 
integral control of the gap error is used to hold the given stable gap(viz. ye=s0). So the controller model 
is 
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where Ua is the actual winding voltage, Uc is the control voltage that the suspending subsystem 
outputs, kc1 is the current feedback coefficient, kc2 is the plus of the current sensor, kd and kp are the 
feedback plus of the velocity and gap, respectively, and s0 is the given stable gap. Now the problem 
is to choose the control parameters which should ensure the stability and leads to the satisfying 
dynamic response.  

In the controller design process, the disturbance of the guideway is ignored to reduce the 
design difficulty. For the same reason, the chassis and upwards parts are regard as an unit 
one which mass is m.  Now from (3) ~ (6) we can deduce that the controller consists of two 
characteristic generalized modes: one is the current loop frequency ωm and damping ξm, the other is 
the suspending frequency ωc and damping ξc. The connections between these two mode and control 
parameters are showed as 
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After choosing the frequency and damping of the current loop and the suspending subsystem, the 
value of the controller parameters are readily determined. The practice shows that this controller can 
realize the fast tracing of the current and hold robust when the load changes. 

2.3 Elastic levitation chassis 

The elastic levitation chassis can be modeled by eight nodes as shown in Fig. 1. Beside the gravity, 
the first node accepts the electromagnetic force Fe and the sixth accepts the air spring force Fa. So the 
model is 
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where y is a vector describing the displacement of each node in y coordinate, y0 is the initial node’s 
position, M, C and K are the mass, damping and stiffness matrix, respetively, and the dimension of 
each matrix is 8×8. The value of the matrix coefficient will be explained in the third part.  

2.4 Second suspending subsystem 

The relationship of the force and distortion of the air spring can be considered to be linear in the 
practice. So we can use the following equation to analyze the second suspending subsystem 
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where the constant a is the initial length of the spring, ya is the displacement of the carriage in y 
coordinate, ka is the stiffness of the air spring, Ca is the damping of the second suspending subsystem. 

2.5 Carriage 

Because of its huge stiffness coefficient, the carriage is regarded as a rigid body: 
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2.6 Model of the magelv 

Choose the state variable as: 
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Using (1)-(10), the dynamic differential equations of the maglev system is: 
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3 Modeling the elastic levitation chassis 

Based on the definition of the mass and stiffness matrix, we model the eight nodes dynamic 
response model of the elastic chassis with the aid of the finite element analysis method. We will also 
use the finite element method to prove the matrix validity. In this paper, we consider the levitation 
chassis structure in the Changsha Middle-low Speed Maglev Laboratory. Because the levitation 
chassis has a small damp, the damp matrix C is ignored. 

The finite element method is used to aid the modeling of the matrices M and K because the 
chassis structure is complex and the element value calculation is difficult. The modeling process of 
chassis is [6]: Firstly, use the software, like Pro_e or Solidworks, to construct the 3D structure of the 
chassis; Secondly, save the structure as .igs format and import it into the finite element analysis 
software ANSYS. Note that we must carefully find the equivalent area of the corresponding node for 
during the analysis process the object we dealt with is not nodes but areas. When we calculate the 
stiffness matrix element in the first row, the equivalent areas except the first one is fixed, so the other 
seven nodes has no free DOF. Then put 1 millimeter restriction on the first equivalent area, and use 
this structure analysis function of ANSYS to solve the problem. After the calculation finished, the 
total counterforce of each area should be read out and multiplied by 1000. These numbers are just the 
values of the first row element. The other stiffness row element can be calculated in the similar way. 
When calculating the mass matrix elements, the load added to the area is not the unit displacement but 
the acceleration.  

The matrices M and K are calculated as listed in Table 1. Because M and K are symmetric, the 
table only lists the upper-triangular part of the two matrices. Based on Table 1 and (8), the eigenvalues 
of the maglev system are 

121.658，240.871，321.847，380.012，494.699，664.733，746.782，905.853 
Simultaneously, the mode analysis result of ANSYS is： 

116.61，242.27，312.58，390.72，540.83，679.97，789.24，943.44 
Comparing these two set of results we can see that the error is 2% in the low frequency range and 

increase up to 5% in the high frequency range. This is due to the limited nodes selection. We only 
choose 8 nodes, which is equivalent to truncating the high frequency mode of the system. But in the 
whole frequency range the error is acceptable, so next we will use the data in Table 1 to analyze the 
vibration characteristics of the maglev. 
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Table 1  The mass and stiffness matrix value of the elastic levitation chassis 
Mass Matrix Stiffness(1.0e+07) 

Index Value Index Value Index Value Index Value 
(1,1) 24.1071 (5,5) 52.5993 (1,1) 0.6563 (5,5) -0.6354
(2,2) 48.2437 (5,6) 5.9407 (2,2) -0.6563 (5,6) 0.9318 
(2,3) 6.9795 (6,6) 59.7711 (2,3) 1.2250 (6,6) -0.2965
(3,3) 44.3865 (6,7) 6.6010 (3,3) -0.5687 (6,7) 0.5489 
(3,4) 10.1250 (7,7) 62.4000 (3,4) 1.3465 (7,7) -0.2524
(4,4) 43.6022 (7,8) 7.2740 (4,4) -0.7778 (7,8) 0.4677 
(4,5) 9.7793 (8,8) 31.8760 (4,5) 1.4131 (8,8) -0.2153

4 The vibration analysis of the maglev suspending system 

Because of the trivially variable gap, the mode analysis of the diagnostic maglev system (i.e. the 
linearization system) can indicate the dynamic vibrant response of the real system. In this paper, we 
use the parameters of the Changsha test runs:  

ka = 40000, ca = 400, a = 0.3 m, L = 25, β = 0.01, ρ = 3000 kg/m, ω1 =90 rad/s, s0 = 0.01 m, R = 3, k 
= 0.0035 

From (7) we can see that the control parameters are closely related with the load. If the load 
varied greatly while the parameters of the controller keeps unchanged, the system will become 
instable. In real runs, the control parameters are always adjusted according to (7) by measuring the 
current stable value and deriving the load. Here the current loop frequency is 50 Hz and the 
suspending subsystem frequency is 7 Hz, the damp radios are all 0.7.  

The mode analysis result is shown in Table 2 with different load. Because the maglev system has 
damp, the calculated vibration modes are all complex. Im(λ) is the imaginary part corresponding to the 
vibration frequency and Re(λ) is the real part corresponding to the vibration attenuation coefficient. 
The table only lists the low attenuating vibration mode in order to observe the main vibration 
phenomena of the maglev system. Table 2 shows that the attenuating coefficients change accordingly 
when the load varies. However, the vibration frequency of each mode keeps unchanged. 

Table 2  The vibration frequencies of the maglev in different load 
m Re(λ) Im(λ) m Re(λ) Im(λ) 

-0.0662 3.64511 -0.0496 3.15688 
-0.0463 426.932 -0.0435 426.932 
-0.0435 0.03374 -0.0401 0.02921 
-0.0100 89.9525 -0.0100 89.9525 
-7.99e-5 308.169 -7.99e-5 308.169 

3000 

-4.29e-6 277.753 

4000 

-4.32e-6 277.753 
-0.0435 426.932 -0.0435 426.932 
-0.0397 2.82367 -0.0331 2.57769 
-0.0359 0.02612 -0.0327 0.02384 
-0.0100 89.9525 -0.0100 89.9525 
-7.98e-5 308.169 -7.98e-5 308.169 

5000 

-4.35e-6 277.753 

6000 

-4.36e-6 277.753 
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In this paper, the vibration analysis results of the rigid levitation chassis are also given to 
compare the dynamic effects of the rigid with elastic chassis. Similarly, only the low attenuating mode 
(only one)  is listed： 

m = 3000：Re(λ) ＝ -0.0666332，Im(λ) ＝ 3.65098 
m = 4000：Re(λ) ＝ -0.0499778，Im(λ) ＝ 3.16194 
m = 5000：Re(λ) ＝ -0.0399836，Im(λ) ＝ 2.82812 
m = 6000：Re(λ) ＝ -0.0333205，Im(λ) ＝ 2.58173 
Comparing these result with those in Table 2, it is easy to conclude that because of the elastic 

levitation, several low attenuated modes are added to the linearized maglev system. When the 
levitation is elastic, some inherent frequencies have common divisors, e.g., 277.753 ≈ 3×89.9525, 
531.046 ≈ 277.753×2, etc. 

5 Conclusions 

Because of the introduction of the elastic levitation chassis, the amount of the vibration 
frequencies is largely increased and some of them are commonly divided[7]. This problem enhances the 
chances of the system internal resonance: if a vibration mode of certain subsystem is inspired, the 
vibration will be continuously transferred between the common modes and finally result in the whole 
system vibration. This kind of vibration is difficult to adjust by controller or the second appending 
subsystem, so the elastic levitation chassis must be selected carefully during the system design 
process.  
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