
Swissmetro: design methods for ironless linear transformer 
 

Nicolas Macabrey 
GESTE Engineering SA 

Scientific Park PSE-C, CH-1015 Lausanne, Switzerland 
Tel (+41) 21 693 83 60, Fax. (+41) 21 693 83 61, nicolas.macabrey@geste.ch 

Keywords 

Swissmetro, contactless energy transfer, design method, linear transformer 

Abstract 
Among the various contactless electromechanical equipments used in high speed maglev systems, the 
function of energy transfer is, in practice, not easy to implement. The two main classes of components 
are the linear generators and the linear transformers. The latter have the advantage of being insensitive 
to the vehicle speed. They also present interesting potential for the industrial applications.  
Nevertheless, if the ironless linear transformer has a particularly simple structure, its design is not 
trivial. This paper gives some information about the methods to use, to design and calculate a multi-
primary linear transformer, considering various external constrains. 

1. Introduction 

1.1. General 
Maglev systems involve contactless electromechanical devices. This is usual for propulsion, levitation 
and guidance functions but, in the case of a completely “flying” maglev vehicle, the energy transfer 
shall also be frictionless. Guaranteeing this function without any influence of the speed of the vehicle 
is particularly difficult and is limited to the linear transformer approach. The potential and limits of 
this approach has been described in a previous paper [1]. The present article deals with the modelling, 
calculation and design methods for ironless linear transformers. 

1.2. Constraints of the environment 
Even if the ironless variant of linear transformer is limited by several factors (see [1] for details), an 
ironless specification could be imposed either by a large airgap or by constraints of mass (vehicle).  
In the domain of high speed systems (maglev trains), classical solutions of energy transfer (friction) 
are limited by electromagnetic pollution as well as by the overall dimensions (Swissmetro). 
Interesting variants in the field of inductive contactless solutions belong to the domains of linear 
generators and linear transformers. In linear transformer systems, according to the specific 
environment, the most frequently used solutions are either ironless structures or systems with an iron 
core located at the level of the secondary winding (the winding in motion). Moreover, the 
environment of the system can impose constraints on the dimension of the transformer, the value of 
the airgap, the “invisibility” of the system, the acceptable electromagnetic emission areas, etc.  

1.3. Definition of the main parameters 
There is no universal method, available in any case, to design an ironless linear transformer. 
According to the global environment of the system, different parameters will have to be selected as 
priority holder. These main parameters can be the mass, the efficiency, the primary voltage, the length 
of the windings, the volume, etc.  
This paper develops the methods for the calculation and presents strategies for inductance calculation 
and multi-primary architecture. An analyse of the geometrical characteristics of the transformer 
ensures the choice of the technique and the adequate model of calculation.  
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2. Calculation of mutual inductances 
 
The calculation of the mutual inductances is based on the solving of the integral forms of the Maxwell 
equations. 
 

2.1. Neumann’s formula 
Neumann’s formula is used in the calculation of the mutual inductances which exists between two 
loops (one turn coils). 
 

dl1

dl2

C1

C2

 

x

y

z

a1

a2

c1

c2

d1 d2 b1 b2

h

2d 2e

ε
 

Figure 1 Geometry between two loops (one turn coils) respectively circular and rectangular 
 
This method takes into account both the finite length of the wire and the longitudinal non-uniformity 
of the linked magnetic field. The general formula is: 
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For two rectangular coils, one fixed and one in motion, the use of Neumann's formula involves the 
decomposition into segments of a straight line (the sides and the extremities). The formula is applied 
to pair of segments. 
 
The coordinates r1 et r2 correspond respectively to the primary and secondary straight segments of 
coils. The integration contour-lines l1 et l2 are consequently the primary and secondary coils. 
These contour-lines are covered in the following direction: 
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• for l2 (secondary): 
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For the mutual inductance which links the sides a1 and a2, the terms of equation {1}become: 
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The total mutual inductance between the two coils is the sum of the mutual inductances of the 
segments: 
 
 M12 = Ma1a2 + Mb1b2 + Mc1c2 + Md1d2 + Ma1c 2 + Mb1d2 + Mc1a2 + Md1b2  {8} 
 

2.2. The flux method 
The flux method considers the sides of the rectangular coil as longitudinally uniform and infinite. 
Thus, it applies to the calculation of linear mutual inductance between long rectilinear coils. 
The basic concept of this method consists in calculating the magnetic field by integrating Poisson's 
vectorial equation outside the wire: 
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Outside the conductor, where the current density is zero, the magnetic field becomes: 
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I
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The mutual inductance then becomes: 
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Figure 2 Cross-section 

 
The wires are actually of finite length and the magnetic field along them is non-uniform. Close to the 
conductor (length 2d), oriented by the axe z, the magnetic field is (according to Biot-Savart’s law): 
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This formula shows that the amplitude of the pure azimuthal magnetic field is a function of the length 
of the conductor (2d). When this length (2d) goes to infinity, {12} simplifies in {10}. Therefore, the 
use of the simplified formula {10} leads to an inaccuracy, which is inversely proportional to the 
length of the conductors.  



3. Calculation of the main inductances 
This section is devoted to the calculation of the main inductances of rectangular coils. Various 
methods are considered according to their ability to consider the following aspects: 
 
• Finite length of the conductors; 
• Modelling with and without extremities; 
• Coupling between turns of a single winding. 

3.1. Complete model 
The first calculation is based upon the following hypotheses: 

• Calculation of the main inductance of a rectangular coil (one turn coil, N=1); 

• The external component of the inductance integrates the finite characteristic of the side of the coil; 

• The internal component of the inductance is based upon an expression of the magnetic field 
linked to rectilinear and infinite wire. 

By Biot-Savart’s formula, the external component of a single turn coil main inductance is:    
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This external component is a function of the section of the wire (r is the radius).  
 
The internal component of the main inductance is calculated thanks to the magnetic energy formulas: 
 
 Li =

µ l
8π

 {14} 

Deeper investigations in internal component of the main inductance show that the hypothesis of 
infinite length is widely valid. The sole restriction appears when the diameter of the wire is close to its 
length. In that very particular case the flux is: 
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Finally, the main inductance is the sum of the two components (internal and external): 
 
 L = Li + Le  {16} 
 



3.2. Linear main inductance 
When the geometry of the coils is such that the value of the length is way larger to the value of the 
width, then the linear approximation is valid. 
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Figure 3 Cross section of a linear main inductance 

 
The well known associated formula is: 
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3.3. Main inductance of a N turns rectangular coil 
The two ways to calculate the main inductance are: 
 

• To add the sum of the main inductances linked to each turn to the sum of the mutual 
inductances between turns of a single winding; 

• To determine the position of an equivalent central turn and to multiply its main inductance 
value (Leq) by the square of N, the number of turns. 
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The ratio of the winding section versus the overall dimension is relevant to choose a calculation method. 
 

4. Results: sensitivity analysis 

4.1. Mutual inductance 

Finite length 
The first result illustrates the influence of the finite length of the coil. For a primary coil of one meter 
long and a secondary length, which varies from 0.1 m to 10 m, the difference between the flux’ and 
Neumann’s methods is (width = 0.3 m) given in the following figure 
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Figure 4 Difference the flux’ and Neumann’s methods 



The maximum error occurs when the lengths of the coils are equal. Thus, when the difference between 
the lengths increases, the error is reduced. A narrow structure will impose a greater length difference 
between the coils in order to reduce the error of the flux method. 
 

Extremities 
The table below illustrates the influence of considering the extremities of the coils (2 coils of one 
meter long, 0.3 m in width, airgap 15 mm, perfectly overlapped): 
 

method Flux_sides Flux_sides 
+ 
extremities 

Neum_sides Neum_sides
+ 
extremities 

Flux2D_ 
sides 

Measured 
value 

L12 [mH] 1,19 1.69 1.09 1.404 1.16 1.41 

Normed 
error [%] 15.6 19.8 22.7 0.5 17.7 - 

Table 5 Difference between theory and measures, with and without extremities 

Conclusion 
The flux method can be used when both the difference between primaries and secondary is important 
(factor of 3) and the difference between the length and the width exceed 2. It is also relevant when the 
primary and secondary lengths are similar and the ratio between length and width surpass 4. 
When the structure of the windings is long, the extremities are important in Neumann’s formula if the 
ratio between the primary and secondary lengths is inferior to 5 (the extremities are negligible beyond 
this value). In the flux’ method to consider the extremities represents a source of error in most cases. 
 

4.2. Main inductances 
First of all, it is important to notice that, in the case of the main inductance, it is difficult to establish 
general rules due to the large number of factors, to their imbrication and to their possible mutual error 
compensation. 
 
Table 6 shows for a coil (1 m long, 0.3 m width, wires radius of 1.75 mm and N=4), the value of the 
main inductance calculated by various methods, as well as measured. 
 

 Llin  Leq  L (turn by turn) Lmeasured  
inductance [mH] 34.6 43.1 36.07 36.20 
Normed error 
[%] 

4.5 19 0.5 - 

Table 6 Comparison between theoretical and measured values 
The sophisticated method, consisting in considering each turn (turn by turn), yields a high level of 
accuracy compared with the approach based on an equivalent turn centered in the winding. The good 
performance of the simplest method (linear inductance Llin) is due to an error compensation effect 
(neglect of the extremities and equivalent turn). 
 
With a rough estimate, the simple linear approach is valid for long structures and a low number of 
turns. When both the winding geometry is close to a square and the number of turns is rather high, the 
sophisticated method gives excellent results (calculations turn by turn, application of Biot-Savart’s 
formula for both internal and external components of the inductance; calculation of the mutual term 
by the Neumann’s formula). Some configuration could crate problems in terms of numerical 
calculations (convergence difficulties). More complex decision procedures and trees are given in [2]. 



5. Design and calculation of a multi-primary linear transformer 

5.1. The transformer model 
Ref [1] introduces a multi-primary transformer model based on voltage equations. It also shows the 
conditions when the mutual inductances between primary can be neglected. It also demonstrates the 
lack of sensitivity of linear transformers versus speed. The power distribution between the various 
primaries is illustrated in [3]. 
To compensate the reactive power or to tune the circuitry for a HF supply by frequency converter, it is 
necessary to connect an input capacitor in parallel with the two primaries (see Fig. 7). C2 capacitor 
allows an exchange of reactive power (magnetisation of the transformer). 
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Figure 7 Electric scheme of the multi-primary transformer 
 
The expression for the input impedance Zin is: 
 
 Z in =

1
1

Zeq
+

1
ZC1
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where Zeq=Req+jXeq is the impedance corresponding to two primaries and the secondary referred to 
the primaries; 
and, ZC1=jXC1 is the impedance of the capacitor C1. 
 
C1 is calculated so that the reactance XC1 the imaginary part of Zin cancel each other 
 
 XC1 =

Req
2 + Xeq

2

Xeq
 {20} 

 
Ref [1] analyses the influence of respectively the frequency, the type of wire, the airgap, the capacities 
at the primary and secondary, the position of the secondary, the speed, the coupling between 
contiguous primaries and the number of turns. 
 

5.2. CAD software and comparison theory - measurement 
Based upon the specifications of the secondary, the CAD software enables to design the transformer 
by calculating the primary main values (voltage, current, efficiency, power factor). It also evaluates 
the sensitivity of the transformer characteristics to the main parameters (geometrical, electrical,...). 
The parametric curves showed below illustrate the results obtained on an energy transfer test bench of 
low power (two 1 m long primaries, a 0.9 m long secondary, width of the transformer 0.3 m). 
The validation of the method has been done on a low voltage and high frequency (100 kHz) 
transformer bench designed for electric vehicles application. 
The structure of the test bench is constituted by two contiguous primaries connected in parallel to a 
frequency converter. The secondary winding, connected through a rectifier to a load resistance, slides 
over the primaries. 
 
 
 



For a transformer with the following parameters: 
 
• l1(a) = l1(b) =1 m, δ = 55 mm, width = 300 mm (δ is the airgap) 
• N1=4, N2=14 
• U1=350 V, U2=215 V 
The calculated and measured values of the power as a function of secondary capacitor for reduced 
voltage supply (dc 50 V) are, for Litz wires: 
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Figure 8 P=f(C2) 

The theoretical and measured evolution of the secondary voltage versus the airgap is given below: 
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Figure 9 Secondary voltage versus airgap value 

The concordance between the characteristics calculated by the program and measured shows that these 
calculation methods are valid and the results puts to light the interesting potential of this energy 
transfer technique. The best configuration leads to an efficiency of 94% for the transformer and 95% 
for the frequency converter. This corresponds to a global efficiency close to 89%. 
 

6. Conclusion 
This paper describes the best way to model and calculate a ironless linear transformer comprising 
various primary windings. This method and its CAD software have been successfully applied in 
various industrial and transport applications over the last years. The linear transformer for the 
Swissmetro application was designed  by these method and tools. 
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