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Abstract

Among the various contactless electromechanical equipments used in high speed maglev systems, the
function of energy transfer is, in practice, not easy to implement. The two main classes of components
are the linear generators and the linear transformers. The latter have the advantage of being insensitive
to the vehicle speed. They also present interesting potential for the industrial applications.
Nevertheless, if the ironless linear transformer has a particularly simple structure, its design is not
trivial. This paper gives some information about the methods to use, to design and calculate a multi-
primary linear transformer, considering various external constrains.

1. Introduction

1.1. General

Maglev systems involve contactless electromechanical devices. This is usual for propulsion, levitation
and guidance functions but, in the case of a completely “flying” maglev vehicle, the energy transfer
shall also be frictionless. Guaranteeing this function without any influence of the speed of the vehicle
is particularly difficult and is limited to the linear transformer approach. The potential and limits of
this approach has been described in a previous paper [1]. The present article deals with the modelling,
calculation and design methods for ironless linear transformers.

1.2. Constraints of the environment

Even if the ironless variant of linear transformer is limited by several factors (see [1] for details), an
ironless specification could be imposed either by a large airgap or by constraints of mass (vehicle).

In the domain of high speed systems (maglev trains), classical solutions of energy transfer (friction)
are limited by electromagnetic pollution as well as by the overall dimensions (Swissmetro).
Interesting variants in the field of inductive contactless solutions belong to the domains of linear
generators and linear transformers. In linear transformer systems, according to the specific
environment, the most frequently used solutions are either ironless structures or systems with an iron
core located at the level of the secondary winding (the winding in motion). Moreover, the
environment of the system can impose constraints on the dimension of the transformer, the value of
the airgap, the “invisibility” of the system, the acceptable electromagnetic emission areas, etc.

1.3.  Definition of the main parameters

There is no universal method, available in any case, to design an ironless linear transformer.
According to the global environment of the system, different parameters will have to be selected as
priority holder. These main parameters can be the mass, the efficiency, the primary voltage, the length
of the windings, the volume, etc.

This paper develops the methods for the calculation and presents strategies for inductance calculation
and multi-primary architecture. An analyse of the geometrical characteristics of the transformer
ensures the choice of the technique and the adequate model of calculation.
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2. Calculation of mutual inductances

The calculation of the mutual inductances is based on the solving of the integral forms of the Maxwell
equations.

2.1. Neumann’s formula

Neumann’s formula is used in the calculation of the mutual inductances which exists between two
loops (one turn coils).
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Figure 1 Geometry between two loops (one turn coils) respectively circular and rectangular

This method takes into account both the finite length of the wire and the longitudinal non-uniformity
of the linked magnetic field. The general formula is:
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For two rectangular coils, one fixed and one in motion, the use of Neumann's formula involves the
decomposition into segments of a straight line (the sides and the extremities). The formula is applied
to pair of segments.

The coordinates r] et rp correspond respectively to the primary and secondary straight segments of
coils. The integration contour-lines 17 et 12 are consequently the primary and secondary coils.
These contour-lines are covered in the following direction:
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For the mutual inductance which links the sides aj and a2, the terms of equation {1 }become:
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The total mutual inductance between the two coils 1s the sum of the mutual inductances of the
segments:

MZ :Ma1a2 +Mb1b2+Mc +Md1d2+Ma162+Mb1d2 +Mqa2+Md1b2 {8}

1€2

2.2.  The flux method

The flux method considers the sides of the rectangular coil as longitudinally uniform and infinite.
Thus, it applies to the calculation of linear mutual inductance between long rectilinear coils.

The basic concept of this method consists in calculating the magnetic field by integrating Poisson's
vectorial equation outside the wire:

VxH=e J, {9}

Outside the conductor, where the current density is zero, the magnetic field becomes:
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The mutual inductance then becomes:
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Figure 2 Cross-section

The wires are actually of finite length and the magnetic field along them is non-uniform. Close to the
conductor (length 2d), oriented by the axe z, the magnetic field is (according to Biot-Savart’s law):
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This formula shows that the amplitude of the pure azimuthal magnetic field is a function of the length
of the conductor (2d). When this length (2d) goes to infinity, {12} simplifies in {10}. Therefore, the
use of the simplified formula {10} leads to an inaccuracy, which is inversely proportional to the
length of the conductors.



3. Calculation of the main inductances

This section is devoted to the calculation of the main inductances of rectangular coils. Various
methods are considered according to their ability to consider the following aspects:

o Finite length of the conductors;
e Modelling with and without extremities;
e Coupling between turns of a single winding.

3.1. Complete model
The first calculation is based upon the following hypotheses:

e (alculation of the main inductance of a rectangular coil (one turn coil, N=1);
e The external component of the inductance integrates the finite characteristic of the side of the coil;

e The internal component of the inductance is based upon an expression of the magnetic field
linked to rectilinear and infinite wire.

By Biot-Savart’s formula, the external component of a single turn coil main inductance is:
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This external component is a function of the section of the wire (r is the radius).
The internal component of the main inductance is calculated thanks to the magnetic energy formulas:

Li=— {14}

Deeper investigations in internal component of the main inductance show that the hypothesis of
infinite length is widely valid. The sole restriction appears when the diameter of the wire is close to its
length. In that very particular case the flux is:
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Finally, the main inductance is the sum of the two components (internal and external):

L=1;+1, 116}



3.2. Linear main inductance

When the geometry of the coils is such that the value of the length is way larger to the value of the
width, then the linear approximation is valid.
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Figure 3 Cross section of a linear main inductance

The well known associated formula is:

L’:Nzﬁo-[lﬂnz—d] (17}

3.3. Main inductance of a N turns rectangular coil
The two ways to calculate the main inductance are:

e To add the sum of the main inductances linked to each turn to the sum of the mutual
inductances between turns of a single winding;

e To determine the position of an equivalent central turn and to multiply its main inductance
value (L¢q) by the square of N, the number of turns.
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The ratio of the winding section versus the overall dimension is relevant to choose a calculation method.

4. Results: sensitivity analysis
4.1. Mutual inductance

Finite length

The first result illustrates the influence of the finite length of the coil. For a primary coil of one meter
long and a secondary length, which varies from 0.1 m to 10 m, the difference between the flux’ and
Neumann’s methods is (width = 0.3 m) given in the following figure

Figure 4 Difference the flux’ and Neumann’s methods



The maximum error occurs when the lengths of the coils are equal. Thus, when the difference between
the lengths increases, the error is reduced. A narrow structure will impose a greater length difference

between the coils in order to reduce the error of the flux method.

Extremities

The table below illustrates the influence of considering the extremities of the coils (2 coils of one

meter long, 0.3 m in width, airgap 15 mm, perfectly overlapped):

method Flux_sides Flux_sides Neum_sides | Neum sides | Flux2D Measured
+ + sides value
extremities extremities

Li2 [mH] 1,19 1.69 1.09 1.404 1.16 1.41

Normed | 5 ¢ 19.8 2.7 0.5 17.7 i

error [%]

Table 5 Difference between theory and measures, with and without extremities
Conclusion

The flux method can be used when both the difference between primaries and secondary is important
(factor of 3) and the difference between the length and the width exceed 2. It is also relevant when the
primary and secondary lengths are similar and the ratio between length and width surpass 4.

When the structure of the windings is long, the extremities are important in Neumann’s formula if the
ratio between the primary and secondary lengths is inferior to 5 (the extremities are negligible beyond
this value). In the flux’ method to consider the extremities represents a source of error in most cases.

4.2.

First of all, it is important to notice that, in the case of the main inductance, it is difficult to establish
general rules due to the large number of factors, to their imbrication and to their possible mutual error
compensation.

Main inductances

Table 6 shows for a coil (1 m long, 0.3 m width, wires radius of 1.75 mm and N=4), the value of the
main inductance calculated by various methods, as well as measured.

Liin Leq L (turn by turn) | Lmeasured
inductance [mH] | 5, 43.1 36.07 36.20
Normed  error

4.5 19 0.5 -
[Y]

Table 6 Comparison between theoretical and measured values

The sophisticated method, consisting in considering each turn (turn by turn), yields a high level of
accuracy compared with the approach based on an equivalent turn centered in the winding. The good
performance of the simplest method (linear inductance Lj;,) is due to an error compensation effect
(neglect of the extremities and equivalent turn).

With a rough estimate, the simple linear approach is valid for long structures and a low number of
turns. When both the winding geometry is close to a square and the number of turns is rather high, the
sophisticated method gives excellent results (calculations turn by turn, application of Biot-Savart’s
formula for both internal and external components of the inductance; calculation of the mutual term
by the Neumann’s formula). Some configuration could crate problems in terms of numerical
calculations (convergence difficulties). More complex decision procedures and trees are given in [2].



5. Design and calculation of a multi-primary linear transformer

5.1. The transformer model

Ref [1] introduces a multi-primary transformer model based on voltage equations. It also shows the
conditions when the mutual inductances between primary can be neglected. It also demonstrates the
lack of sensitivity of linear transformers versus speed. The power distribution between the various
primaries is illustrated in [3].

To compensate the reactive power or to tune the circuitry for a HF supply by frequency converter, it is
necessary to connect an input capacitor in parallel with the two primaries (see Fig. 7). C, capacitor
allows an exchange of reactive power (magnetisation of the transformer).
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Figure 7 Electric scheme of the multi-primary transformer

The expression for the input impedance Zip, is:

Zo— L {19}

where Zeg=ReqtjXeq is the impedance corresponding to two primaries and the secondary referred to
the primaries;
and, Zc1=jXc1 is the impedance of the capacitor C1.

C, is calculated so that the reactance X1 the imaginary part of Zin cancel each other

2 2
S {20}
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Ref [1] analyses the influence of respectively the frequency, the type of wire, the airgap, the capacities
at the primary and secondary, the position of the secondary, the speed, the coupling between
contiguous primaries and the number of turns.

5.2. CAD software and comparison theory - measurement

Based upon the specifications of the secondary, the CAD software enables to design the transformer
by calculating the primary main values (voltage, current, efficiency, power factor). It also evaluates
the sensitivity of the transformer characteristics to the main parameters (geometrical, electrical,...).
The parametric curves showed below illustrate the results obtained on an energy transfer test bench of
low power (two 1 m long primaries, a 0.9 m long secondary, width of the transformer 0.3 m).

The validation of the method has been done on a low voltage and high frequency (100 kHz)
transformer bench designed for electric vehicles application.

The structure of the test bench is constituted by two contiguous primaries connected in parallel to a
frequency converter. The secondary winding, connected through a rectifier to a load resistance, slides
over the primaries.



For a transformer with the following parameters:

* I1(a)=11(b) =1 m, 6 = 55 mm, width = 300 mm (9 is the airgap)

* Ni1=4,No=14

« U1=350V,Up=215V

The calculated and measured values of the power as a function of secondary capacitor for reduced
voltage supply (dc 50 V) are, for Litz wires:
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6.60 686 7.5 741 770 796 819 845 874 9.00

Figure 8 P=f(C,)
The theoretical and measured evolution of the secondary voltage versus the airgap is given below:
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Figure 9 Secondary voltage versus airgap value
The concordance between the characteristics calculated by the program and measured shows that these
calculation methods are valid and the results puts to light the interesting potential of this energy
transfer technique. The best configuration leads to an efficiency of 94% for the transformer and 95%
for the frequency converter. This corresponds to a global efficiency close to 89%.

6. Conclusion

This paper describes the best way to model and calculate a ironless linear transformer comprising
various primary windings. This method and its CAD software have been successfully applied in
various industrial and transport applications over the last years. The linear transformer for the
Swissmetro application was designed by these method and tools.
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